• Title/Summary/Keyword: Mesh Modification

Search Result 74, Processing Time 0.019 seconds

Development of Local Modification Functions for Edge Rounds on Shell Meshes (쉘 메쉬 모델의 모서리 라운드 탐색 및 수정 기능)

  • 이원경;이상헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.624-627
    • /
    • 2000
  • This paper describes a local modification capability on shell meshes, which can change a 'constant or variable radius of rounding for the s h q edges of the stamping die shoulder in the mesh. The algorithm consists of the followin_e three main steps; (1) the rounding area for sharp edges of a die shoulder are detected from the given shell mesh, (2) a rolling-ball surface with a given constant or variable radius is generated, which is contacti% with two incident face groups of the sharp edges, (3) the rounding area of the mesh is cut off, and a new mesh for the rolling-ball surface is generated and implanted into the gap. Owing to this rounding modification capability, CAE engineers can examine various cases based on the existing dies by scanning them to form polyhedral models and then changing radii of die shoulders for stamping process simulation.

  • PDF

Determination of the Tooth Modification Amounts for Minimizing the Vibration of Helical Gear (헬리컬 치차의 진동최소화를 위한 치면 수정량의 결정)

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.199-205
    • /
    • 2000
  • The vibration and noise of gears is due to the vibration exciting force caused by the tooth stiffness which changes periodically as the mesh of teeth proceeds and by the transmission error, that is, the rotation delay between driving gear and driven gear caused by manufacturing error and alignment error in assembly and so on. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification, end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the mesh analysis of gears. The constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth fillet stress, surface durability and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. And, since the aspect ratio is an important parameter of tooth modification, we investigate the relation between it and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is to be utilized to resolve the problem of vibration of helical gears.

  • PDF

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

A Study on Noise Reduction for an Industrial Right-angled Reducer (산업용 직각형 감속기의 소음 저감에 대한 연구)

  • Seo, Hong-Seung;Park, Sung-Pil;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.546-552
    • /
    • 2011
  • In this study, noise sources of a reducer which is combined a spiral bevel gear and a planocentric gear are identified by experimental method and the noise was reduced by the structure modification of the reducer. In order to identify the noise sources, noise and vibration signals were measured by microphone and accelerometer and these signals were analyzed with waterfall plot. In addition, the frequency response functions were obtained to prove the noise and vibration sources. It was found that the resonance was generated by the gear mesh frequencies and natural frequency of the reducer. The noise of the reducer could be reduced by structure modification.

A Study on Noise Reduction for the reducer designed right angle (산업용 직각형 감속기의 소음 저감에 대한 연구)

  • Seo, Hong-Seung;Park, Sung-Pil;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.51-56
    • /
    • 2011
  • In this study, noise sources of a reducer which is combined a spiral bevel gear and a planocentric gear are identified by experimental method and the noise was reduced by the structure modification of the reducer. In order to identify the noise sources, noise and vibration signals were measured by microphone and accelerometer and these signals were analyzed with waterfall plot. In addition, the frequency response functions were obtained to prove the noise and vibration sources. It was found that the resonance was generated by the gear mesh frequencies and natural frequency of the reducer. The noise of the reducer could be reduced by structure modification.

  • PDF

Development of an Automatic Mesh-Generation Program in Irregular Domains (불규칙영역에서의 격자망 자동발생 프로그램의 개발)

  • 김성희;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.21-30
    • /
    • 1995
  • In order to save time and efforts in generating finite element meshes in irregular houndaries of domains, it is needed to develop an automatic mesh-generator which can hoth promote the accuracy of solutions and reduce the run-time in operating finite ele- ment models. In this study, the advancing front technique of triangular mesh generation and the transforming technique from triangular meshes to quadrilateral meshes were used to de- velop a computer program for the automatic triangular and quadrilateral meshes in the mixed shape. Furthermore, to enhance the quadrilateral mesh quality, the techniques of Laplancian smoothing and interior mesh modification were employed. The mesh genera- tor was applied to evaluate its applicability to irregular and complex geometries such as Nakdong river bay. In has hoen shown that the automatic mesh generator developed is capable of automatically generating meshes for irreguiar and complex geometries with high qualities of meshes and with the simple input data of arbitrarily specified nodal spacing in bound- aries.

  • PDF

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

A Study on Noise Reduction for the Driving System of a Forklift (지게차 구동부의 소음 진동 저감에 대한 연구)

  • Kim, Woo-Hyung;Hong, Il-Hwa;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2008
  • In this study. the noise sources were identified and the noise and vibration were reduced for an industrial forklift. To identify the noise sourses, noise signals were measured by a microphone on a driver seat and these signals were analyzed with a waterfall plot. For this purpose, the gear mesh frequencies from the gear box of a reducer were not only investigated but noise/vibration sourses of an electric motor were also examined. Furthermore, the frequency response functions were obtained to confirm the vibration and noise sourses. It was found that severe vibration and noise were generated in the casing and the connecting part of the reducer. The severe vibration and noise could be reduced by a structure modification.