• 제목/요약/키워드: Memory devices

검색결과 1,076건 처리시간 0.027초

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

정보저장기기와 생물학적 정보저장 매커니즘 비교 (Information Storage Devices and Biological Mechanism of Information Storage)

  • 이승엽;김경호;양우성;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.582-587
    • /
    • 2002
  • Current information storage devices, such as HDD, CD/DVD-ROM/RW, probe-based memory and hologram memory, are compared with biological information storage mechanisms in DNA and brain memory. Newly developed approaches to overcome the limit of storage capacity are introduced in both magnetic and optical recording devices. Linear and areal density of information stored in the biological and mechanical storages are compared for the applications and developments of new storage devices.

  • PDF

Investigating InSnZnO as an Active Layer for Non-volatile Memory Devices and Increasing Memory Window by Utilizing Silicon-rich SiOx for Charge Storage Layer

  • Park, Heejun;Nguyen, Cam Phu Thi;Raja, Jayapal;Jang, Kyungsoo;Jung, Junhee;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.324-326
    • /
    • 2016
  • In this study, we have investigated indium tin zinc oxide (ITZO) as an active channel for non-volatile memory (NVM) devices. The electrical and memory characteristics of NVM devices using multi-stack gate insulator SiO2/SiOx/SiOxNy (OOxOy) with Si-rich SiOx for charge storage layer were also reported. The transmittance of ITZO films reached over 85%. Besides, ITZO-based NVM devices showed good electrical properties such as high field effect mobility of 25.8 cm2/V.s, low threshold voltage of 0.75 V, low subthreshold slope of 0.23 V/dec and high on-off current ratio of $1.25{\times}107$. The transmission Fourier Transform Infrared spectroscopy of SiOx charge storage layer with the richest silicon content showed an assignment at peaks around 2000-2300 cm-1. It indicates that many silicon phases and defect sources exist in the matrix of the SiOx films. In addition, the characteristics of NVM device showed a retention exceeding 97% of threshold voltage shift after 104 s and greater than 94% after 10 years with low operating voltage of +11 V at only 1 ms programming duration time. Therefore, the NVM fabricated by high transparent ITZO active layer and OOxOy memory stack has been applied for the flexible memory system.

  • PDF

TCAD 시뮬레이션을 이용한 Fin형 SONOS Flash Memory의 모서리 효과에 관한 연구 (A Study on the Corner Effect of Fin-type SONOS Flash Memory Using TCAD Simulation)

  • 양승동;오재섭;윤호진;정광석;김유미;이상율;이희덕;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.100-104
    • /
    • 2012
  • Fin-type SONOS (silicon-oxide-nitride-oxide-silicon) flash memory has emerged as novel devices having superior controls over short channel effects(SCE) than the conventional SONOS flash memory devices. However despite these advantages, these also exhibit undesirable characteristics such as corner effect. Usually, the corner effect deteriorates the performance by increasing the leakage current. In this paper, the corner effect of fin-type SONOS flash memory devices is investigate by 3D Process and device simulation and their electrical characteristics are compared to conventional SONOS devices. The corner effect has been observed in fin-type SONOS device. The reason why the memory characteristic in fin-type SONOS flash memory device is not improved, might be due to existing undesirable effect such as corner effect as well as the mutual interference of electric field in the fin-type structure as reported previously.

Non volatile memory device using mobile proton in gate insulator by hydrogen neutral beam treatment

  • 윤장원;장진녕;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.192.1-192.1
    • /
    • 2015
  • We demonstrated the nonvolatile memory functionality of nano-crystalline silicon (nc-Si) and InGaZnOxide (IGZO) thin film transistors (TFTs) using mobile protons that are generated by very short time hydrogen neutral beam (H-NB) treatment in gate insulator (SiO2). The whole memory fabrication process kept under $50^{\circ}C$ (except SiO2 deposition process; $300^{\circ}C$). These devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We also executed hydrogen treatment in order to figure out the difference of mobile proton generation between PECVD and H-NB CVD that we modified. Our study will further provide a vision of creating memory functionality and incorporating proton-based storage elements onto a probability of next generation flexible memorable electronics such as low power consumption flexible display panel.

  • PDF

IoT/에지 컴퓨팅에서 저전력 메모리 아키텍처의 개선 연구 (A Study on Improvement of Low-power Memory Architecture in IoT/edge Computing)

  • 조두산
    • 한국산업융합학회 논문집
    • /
    • 제24권1호
    • /
    • pp.69-77
    • /
    • 2021
  • The widely used low-cost design methodology for IoT devices is very popular. In such a networked device, memory is composed of flash memory, SRAM, DRAM, etc., and because it processes a large amount of data, memory design is an important factor for system performance. Therefore, each device selects optimized design factors such as function, performance and cost according to market demand. The design of a memory architecture available for low-cost IoT devices is very limited with the configuration of SRAM, flash memory, and DRAM. In order to process as much data as possible in the same space, an architecture that supports parallel processing units is usually provided. Such parallel architecture is a design method that provides high performance at low cost. However, it needs precise software techniques for instruction and data mapping on the parallel architecture. This paper proposes an instruction/data mapping method to support optimized parallel processing performance. The proposed method optimizes system performance by actively using hardware and software parallelism.

모바일 사물인터넷 디바이스를 위한 에너지 효율적인 캐시 및 메모리 관리 기법 (Management Technique of Energy-Efficient Cache and Memory for Mobile IoT Devices)

  • 반효경
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.27-32
    • /
    • 2021
  • 본 논문은 차세대 사물인터넷 디바이스를 위한 에너지 효율적인 캐시 및 메모리 관리 기법을 제안한다. 제안하는 기법은 전력 소모가 적은 상변화 메모리를 사물인터넷 디바이스의 메인 메모리로 채택하고 캐시 메모리의 관리 시 쓰기 연산에 취약한 상변화 메모리의 쓰기량을 최소화하는 방향으로 설계한다. 구체적으로 살펴보면 최종단 캐시 메모리에서 캐시 블록이 삭제되어 메인 메모리로 반영될 때, 캐시 블록을 구성하는 캐시 라인별 수정 여부를 추적하여 상변화 메모리에 쓰기 발생량을 적게 발생시키는 캐시 블록을 우선적으로 교체한다. 또한, 최종단 캐시 메모리에서 캐시 블록의 참조 비트와 캐시 라인의 수정 비트를 함께 고려함으로써 메모리 시스템의 성능은 훼손하지 않으면서 에너지 소모를 줄이는 방식을 사용한다. 스펙 벤치마크를 이용한 시뮬레이션 실험을 통해 제안한 기법이 상변화 메모리에 발생하는 쓰기량을 평균 34.6% 줄이고 전력 소모를 28.9% 줄이면서 메모리의 성능 저하는 발생시키지 않음을 보인다.

실시간 데이터 저장을 위한 SD 메모리 카드 설계 (Design of SD Memory Card for Read-Time Data Storing)

  • 문지훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.436-439
    • /
    • 2011
  • 휴대용 디지털 기기 보급의 확산되면서 휴대용 저장장치 수요가 급증하고 있으며, 디지털 카메라 및 캠코더에서는 대부분 SD 메모리 카드를 이용하고 있다. SD 메모리 카드는 일반적으로 플래시 메모리를 기반으로 사용자 데이터를 저장한 후 PC에 데이터를 복사하는 형태로 사용되고 있다. 본 논문에서는 플래시 메모리에 데이터를 저장하는 방식이 아닌, 네트워크를 통하여 사진 및 영상 데이터 저장을 할 수 있는 SD 메모리 카드를 제안한다. SD Slave IP를 통해서 들어오는 데이터 및 메모리 주소 값들을 플래시 메모리로 보내지 않고 네트워크 서버에 전달하여, 실시간으로 SD 메모리에 저장할 데이터를 안전하고 편리하게 저장할 수 있다.

  • PDF

Recent Advance of Flexible Organic Memory Device

  • Kim, Jaeyong;Hung, Tran Quang;Kim, Choongik
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.38-45
    • /
    • 2020
  • With the recent emergence of foldable electronic devices, interest in flexible organic memory is significantly growing. There are three types of flexible organic memory that have been researched so far: floating-gate (FG) memory, ferroelectric field-effect-transistor (FeFET) memory, and resistive memory. Herein, performance parameters and operation mechanisms of each type of memory device are introduced, along with a brief summarization of recent research progress in flexible organic memory.

Amino-style 유도체를 이용한 분자 전자 소자의 전류-전압 특성에 관한 연구 (Current-Voltage Characteristics of Molecular Electronic Devices Using a Amino-Style Derivatives)

  • 김소영;구자룡;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.882-885
    • /
    • 2004
  • Organic molecules have many properties that make them attractive for electronic applications. We have been examining the progress of memory cell by using molecular-scale switch to give an example of the application using both nanoscale components and Si-technology. In this study, molecular electronic devices were fabricated with amion style derivatives as redox-active component to compare to the devices using Zn-Porphyrin derivatives. This molecule is amphiphilic to allow monolayer formation by the Langmuir-Blodgett (LB) method, and then this LB monolayer is inserted between two metal electrodes. According to current-voltage (I-V) characteristics, it was found that the devices show remarkable hysteresis behavior and can be used as memory devices at ambient conditions, when aluminum oxide layer was existed on bottom electrode. Diode-like characteristics were measured only, when Pt layer was existed as bottom electrode. It was also found that this metal layer interacts with the organic molecules and acts as a protecting layer, when thin Ti layer was inserted between the organic molecular layer and the top Al electrode. These electrical properties of the devices may be applicable to active components for the memory and/or logic gates in the future.

  • PDF