Browse > Article
http://dx.doi.org/10.22895/jse.2020.0009

Recent Advance of Flexible Organic Memory Device  

Kim, Jaeyong (Department of Chemical and Biomolecular Engineering, Sogang University)
Hung, Tran Quang (Institute of Chemistry Vietnam Academy of Science and Technology)
Kim, Choongik (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Journal of Semiconductor Engineering / v.1, no.1, 2020 , pp. 38-45 More about this Journal
Abstract
With the recent emergence of foldable electronic devices, interest in flexible organic memory is significantly growing. There are three types of flexible organic memory that have been researched so far: floating-gate (FG) memory, ferroelectric field-effect-transistor (FeFET) memory, and resistive memory. Herein, performance parameters and operation mechanisms of each type of memory device are introduced, along with a brief summarization of recent research progress in flexible organic memory.
Keywords
Ferroelectric; flexible; floating gate; memory; organic; resistive;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Kaltenbrunner, P. Stadler, R. Schwodiauer, A. W. Hassel, N. S. Sariciftci, S. Bauer. (2011, Sep.). Anodized Aluminum Oxide Thin Films for Room-Temperature-Processed, Flexible, Low-Voltage Organic Non- Volatile Memory Elements with Excellent Charge Retention. Adv. Mater. [Online]. 23(42), pp. 4892-4896. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201103189   DOI
2 A. Rani, J. M. Song, M. J. Lee, J. S. Lee. (2012, Nov.). Reduced graphene oxide based flexible organic charge trap memory devices. Appl. Phys. Lett. [Online]. 101(23), pp. 233308. Available: https://aip.scitation.org/doi/10.1063/1.4769990   DOI
3 J. H. Jung, S. H. Kim, H. J. Kim, J. N. Park, J. H. Oh. (2015, July). High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles. Small. [Online]. 11(37), pp. 4976-4984. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201501382   DOI
4 S. W. Lee, H. J. Seong, S. G. Im, H. N. Moon, S. H. Yoo. (2017, Sep.). Organic flash memory on various flexible substrates for foldable and disposable electronics. Nature Communications. [Online]. 8(725), pp. 1-9. Available: https://www.nature.com/articles/s41467-017-00805-z   DOI
5 K. Asadi, D. M. de Leeuw, B. de Boer, P. W. M. Blom. (2008, June). Organic non-volatile memories from ferroelectric phase-separated blends. Nature Materials. [Online]. 7, pp. 547-550. Available: https://www.nature.com/articles/nmat2207   DOI
6 S. W. Jung, B. S. Na, K. J. Baeg, M. S. Kim, S. M. Yoon, J. H. Kim, D. Y. Kim, I. K. You. (2013, Aug.). Nonvolatile Ferroelectric P(VDF‐TrFE) Memory Transistors Based on Inkjet‐Printed Organic Semiconductor. ETRI Journal. [Online]. 35(4), pp. 734-737. Available: https://onlinelibrary.wiley.com/doi/full/10.4218/etrij.13.0212.0280   DOI
7 K. Asadi, M. Li, P. W. M. Blom, M. Kemerink, D. M. de Leeuw. (2011, Dec.). Organic ferroelectric opto-electronic memories. Materials Today. [Online]. 14, pp. 592-599. Available: https://www.sciencedirect.com/science/article/pii/S1369702111703005   DOI
8 M. Xu, L. Xiang, W. Wang, W. Xie, D. Zhou. (2017, Oct.). Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric. Appl. Phys. Lett. [Online]. 111(18), pp. 183302. Available: https://aip.scitation.org/doi/full/10.1063/1.4993857   DOI
9 E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, D. J. Gundlach. (2016, Mar.). Mobility overestimation due to gated contacts in organic field-effect transistors. Nature Communications. [Online]. 7, pp. 10908. Available: https://www.nature.com/articles/ncomms10908?origin=ppub   DOI
10 D. Ji, L. Jiang, X. Cai, H. Dong, Q. Meng, G. Tian, D. Wu, J. Li, W. Hu. (2013, Oct.). Large scale, flexible organic transistor arrays and circuits based on polyimide materials. Organic Electronics. [Online]. 14(10), pp. 2528-2533. Available: https://www.sciencedirect.com/science/article/abs/pii/S156611991300311X?via%3Dihub   DOI
11 K. W. Shin, C. W. Yang, S. Y. Yang, H. Y. Jeon, C. E. Park. (2006, Feb.). Effects of polymer gate dielectrics roughness on pentacene field-effect transistors. Appl. Phys. Lett. [Online]. 88(7), pp. 072109. Available: https://aip.scitation.org/doi/10.1063/1.2176858   DOI
12 Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu. (2011, Nov.). Mica, a Potential Two‐Dimensional‐Crystal Gate Insulator for Organic Field‐Effect Transistors. Adv. Mater. [Online]. 23(46), pp. 5502-5507. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201103592   DOI
13 Q. J. Sun, J. Zhuang, Y. Yan, L. Zhou, Y. Zhou, S. T. Han, W. Wu, H. Y. Peng, R. K. Y. Li, A. L. R. Vellaisamy. (2016, May). Polymer-modified solution-processed metal oxide dielectrics on aluminum foil substrate for flexible organic transistors. Physica Status Solidi (a). [Online]. 213(9), pp. 2509-2517. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201600067   DOI
14 T. Xu, S. Guo, W. Qi, S. Li, M. Xu, W. Xie, W. Wang. (2020, Jan.). High-performance flexible organic thin film transistor nonvolatile memory based on molecular floating-gate and pn-heterojunction channel layer. Appl. Phys. Lett. [Online]. 116(2), pp. 023301. Available: https://aip.scitation.org/doi/10.1063/1.5135043   DOI
15 A. SD, H. Battula, P. K. R. Boppidi, S. Kundu, C. Chakraborty, S. Jayanty. (2020, Jan.). Photophysical, electrochemical and flexible organic resistive switching memory device application of a small molecule: 7,7-bis (hydroxyethylpiperazino) dicyanoquinodimethane. Organic Electronics. [Online]. 76, pp. 105457. Available: https://www.sciencedirect.com/science/article/pii/S1566119919304847?via%3Dihub   DOI
16 H. Yang, Y. Liu, X. Wu, Y. Yan, X. Wang, S. Lan, G. Zhang, H. Chen, T. Guo. (2019, Sep.). High-Performance All-Inorganic Perovskite-Quantum- Dot-Based Flexible Organic Phototransistor Memory with Architecture Design. Adv. Electon. Mater. [Online]. 5(12), pp. 1900864. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900864   DOI
17 Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju, L. Bian, N. Shi, Y. Qian, M. Yi, L. Xie, W. Huang. (2019, Sep.). Small-Molecule-Based Organic Field-Effect Transistor for Nonvolatile Memory and Artificial Synapse. Adv. Funct. Mater. [Online]. 29(50), pp. 1904602. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201904602   DOI
18 M. Lenzlinger, E. H. Snow. (1969, Jan.). FowlerNordheim Tunneling into Thermally Grown SiO2. J. Appl. Phys. [Online]. 40(1), pp. 278-283. Available: https://aip.scitation.org/doi/10.1063/1.1657043   DOI
19 E. Li, X. Wu, S. Lan, Q. Yang, Y. Fang, H. Chen, T. Guo. (2018, Dec.). Flexible ultra-short channel organic ferroelectric non-volatile memory transistors. J. Mater. Chem. C. [Online]. 7, pp. 998-1005. Available: https://pubs.rsc.org/en/content/articlelanding/2019/TC/C8TC04892D#!divAbstract   DOI
20 M. Xu, S. Guo, L. Xiang, T. Xu, W. Xie, W. Wang. (2018, Mar.). High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlOX Interfacial Layer. IEEE Trans. Elect. Devices. [Online]. 65, pp. 1113-1118. Available: https://ieeexplore.ieee.org/document/8287822   DOI
21 M. J. Kang, S. A. Lee, S. J. Jang, S. B. Hwang, S. K. Lee, S. K. Bae, J. M. Hong, S. H. Lee, K. U. Jeong, J. A. Lim, T. W. Kim. (2019, May). Low-Voltage Organic Transistor Memory Fiber with a Nanograined Organic Ferroelectric Film. ACS Appl. Mater. Interfaces. [Online]. 11, pp. 22575-22582. Available: https://pubs.acs.org/doi/10.1021/acsami.9b03564   DOI
22 T. H. Lee, Y. Chen. (2012, Feb.). Organic resistive nonvolatile memory materials. MRS Bulletin. [Online]. 37(2), pp. 144-149. Available: https://www.cambridge.org/core/journals/mrs-bulletin/article/organic-resistive-nonvolatile-memory-materials/70B43727FFC6024818AA9E4A7FF22C4B   DOI
23 Y. Lai, K. Ohshimizu, W. Y. Lee, J. C. Hsu, T. Higashihara, M. Ueda, W. C. Chen. (2011, Aug.). Electrically bistable memory devices based on all-conjugated block copolythiophenes and their PCBM composite films. J. Mater. Chem. [Online]. 21(38), pp. 14502-14508. Available: https://pubs.rsc.org/en/content/articlelanding/2011/JM/c1jm11570g   DOI
24 P. Zhang, B. Xu, C. Gao, G. Chen, M. Gao. (2016, Oct.). Facile Synthesis of Co9Se8 Quantum Dots as Charge Traps for Flexible Organic Resistive Switching Memory Device. ACS Appl. Mater. Interfaces. [Online]. 8(44), pp. 30336-30343. Available: https://pubs.acs.org/doi/10.1021/acsami.6b09616   DOI
25 Y. Y. Zhao, W. J. Sun, M. G. Wang, J. H. He, J. M. Lu. (2019, Nov.). Flexible Ternary Resistive Memory from Organic Bulk Heterojunction. Adv. Mater. Tech. [Online]. 5(1), pp. 1900681. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201900681   DOI
26 I. Rosales-Gallegos, J.A. Avila-Nino, D. Hernandez-Arriaga, M. Reyes-Reyes, R. Lopez-Sandoval. (2017, June). Flexible rewritable organic memory devices using nitrogen-doped CNTs/PEDOT:PSS composites. Organic Electronics. [Online]. 45, pp. 159-168. Available: https://www.sciencedirect.com/science/article/abs/pii/S1566119917301179?via%3Dihub   DOI
27 Z. Jin, Y. Chen, Q.Zhou, P. Mao, H. Liu, J. Wang, Y. Li. (2017, Jan.). Graphdiyne for Multilevel Flexible Organic Resistive Random Access Memory Devices. Mater. Chem. Front. [Online]. 1, pp. 1338-1341. Available: https://pubs.rsc.org/--/content/articlehtml/2017/qm/c7qm00009j   DOI
28 G. Casula, Y. Busby, A. Franquet, V. Spampinato, L. Houssiau, A. Bonfiglio, P. Cosseddu. (2019, Jan.). A flexible organic memory device with a clearly disclosed resistive switching mechanism. Organic Electronics. [Online]. 64, pp. 209-215. Available: https://www.sciencedirect.com/science/article/abs/pii/S1566119918305330?via%3Dihub   DOI
29 K. J. Baeg, Y. Y. Noh, J. E. Ghim, B. G. Lim, D. Y. Kim. (2008, Nov.). Polarity Effects of Polymer Gate Electrets on Non-Volatile Organic Field-Effect Transistor Memory. Adv. Funct. Mater. [Online]. 18(22), pp. 3678-3685. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.200800378   DOI
30 Y. H. Park, K. J. Baeg, C. I. Kim. (2019, Feb.). Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. ACS Appl. Mater. Interfaces. [Online]. 11, pp. 8327-8336. Available: https://pubs.acs.org/doi/10.1021/acsami.8b20571   DOI
31 J. H. Ahn, H. Lee, S. H. Choa. (2013, June). Technology of Flexible Semiconductor/Memory Device. J. of the Micro. & Pack. Society. [Online]. 20, pp 1-9. Available: http://www.koreascience.or.kr/article/JAKO201323965810368.page
32 G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria. (2011, July). Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. [Online]. 110(12), pp. 124518. Available: https://aip.scitation.org/doi/10.1063/1.3671565   DOI
33 Y. J. Cho, W. S. Kim, Y. H. Lee, J. K. Park, G. T. Kim, O. H. Kim. (2018, June). Effect of defect creation and migration on hump characteristics of a-InGaZnO thin film transistors under long-term drain bias stress with light illumination. Solid State Electronics. [Online]. 144, pp. 95-100. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038110117306846?via%3Dihub   DOI
34 B. K. Park, D. I. Ho, G. H. Kwon, D. J. Kim, S. Y. Seo, C. I. Kim, M. K. Kim. (2018, Oct.). Solution-Processed Rad-Hard amorphous Metal-Oxide Thin-Film Transistors. Adv. Funct. Mater. [Online]. 28(47), pp. 1802717. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201802717   DOI
35 H. Ling, S. Liu, Z. Zheng, F. Yan. (2018, June). Organic Flexible Electronics. Small Methods. [Online]. 2(10), pp. 1800070. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201800070   DOI
36 J. H. Koo, D. C. Kim, H. J. Shim, T. H. Kim, D. H. Kim. (2018, July). Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Adv. Funct. Mater. [Online]. 28(35), pp. 1801834. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201801834   DOI
37 R. Bez, E. Camerlenghi, A. Modelli, A. Visconti. (2003, May). Introduction to flash memory. Proceedings of the IEEE. [Online]. 91(4), pp. 489-502. Available: https://ieeexplore.ieee.org/document/1199079   DOI
38 T. Ito, H. Shirakawa, S. Ikeda. (1974, Jan.). Simultaneous polymerization and formation of polyacetylene film on the surface of concentrated soluble Ziegler‐type catalyst solution. Journal of Polymer Science. [Online]. 12(1), pp. 11-20. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/pol.1974.170120102
39 H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti. (2009, Jan.). A high-mobility electron-transporting polymer for printed transistors. Nature. [Online]. 457, pp. 679-686. Available: https://www.nature.com/articles/nature07727   DOI
40 R. Bez, A. Pirovano. (2004, Sep.). Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semi. Processing. [Online]. 7(4-6), pp. 349-355. Available: https://www.sciencedirect.com/science/article/abs/pii/S1369800104001003?via%3Dihub   DOI
41 H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa. (2011, July). Inkjet printing of single-crystal films. Nature. [Online]. 475, pp. 364-367. Available: https://www.nature.com/articles/nature10313   DOI