• Title/Summary/Keyword: Memory Encryption

Search Result 90, Processing Time 0.02 seconds

A Secure Protocol for High-Performance RFID Tag using Dynamic ID Allocating (동적 ID 할당을 이용한 고기능 RFID 태그용 보안 프로토콜)

  • Park Jin-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.642-648
    • /
    • 2006
  • In this paper, I have proposed a secure dynamic ID allocation protocol using mutual authentication on the RFID tag. Currently, there are many security protocols focused on the low-price RFID tag. The conventional low-price tags have limitation of computing power and rewritability of memory. The proposed secure dynamic ID allocation protocol targets to the high-performance RFID tags which have more powerful performance than conventional low-price tag by allocating a dynamic ID to RFID using mutual authentication based on symmetric encryption algorithm. This protocol can be used as a partial solution for ID tracing and forgery.

  • PDF

A Study on the Enhancement of MQTT Protocol with Centralized Key Management (중앙 집중식 키 관리를 통한 MQTT 프로토콜 효율성 증대 연구)

  • Won, Chan-hee;Kim, keecheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.312-313
    • /
    • 2017
  • Internet of Things(IoT) is an intelligent technology and service in which all objects communicate with each other through various networks. Recently Internet of Things(IoT) is one of the fields that is attracting attention as the development of ICT industry. MQTT is a protocol which is safe using TLS or adopting light packet structure for effciency of memory and power using. In this paper, when TLS is used the process of encryption / decryption in the broker occurs. We propose an efficient MQTT protocol through centralized key management by adding authentication server.

  • PDF

Design and Implementation of Flash Cryptographic File System Based on YAFFS (YAFFS 기반의 암호화 플래시 파일 시스템의 설계 및 구현)

  • Kim, Seok-Hyun;Cho, Yoo-Kun
    • Convergence Security Journal
    • /
    • v.7 no.4
    • /
    • pp.15-21
    • /
    • 2007
  • As the amount of flash memory being used in embedded device is increased and embedded devices become more important in many computing environments, embedded file system security becomes more important issue. Moreover embedded devices can be easily stolen or lost because of it's high portability. If the lost embedded device has very important information, there's no means to protect it except data encryption. For improving embedded devices' security this paper propose design and implementation of flash cryptographic file system. For this purpose YAFFS is used. By the modified YAFFS cryptographic file system, the security of embedded devices can be improved.

  • PDF

A Dynamic ID Allocation Protocol for High-Performance RFID Tag (고기능 RFID 태그를 위한 동적 ID 할당 프로토콜)

  • Park Jin-Sung;Choi Myung-Ryul
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.49-58
    • /
    • 2005
  • In this paper, we have proposed a secure dynamic ID allocation protocol using mutual authentication on the RFID tag. Currently, there are many security protocols focused on the low-price RFID tag. The conventional low-price tags have limitation of computing power and rewritability of memory. The proposed secure dynamic ID allocation protocol targets to the high-performance RFID tags which have more powerful performance than conventional low-price tag by allocating dynamic ID to RFID using mutual authentication based on symmetric encryption algorithm. This protocol can be used as a partial solution for ID tracing and forgery.

Flush+Reload Cache Side-Channel Attack on Block Cipher ARIA (블록 암호 ARIA에 대한 Flush+Reload 캐시 부채널 공격)

  • Bae, Daehyeon;Hwang, Jongbae;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1207-1216
    • /
    • 2020
  • Since the server system in the cloud environments can simultaneously operate multiple OS and commonly share the memory space between users, an adversary can recover some secret information using cache side-channel attacks. In this paper, the Flush+Reload attack, a kind of cache side-channel attacks, is applied to the optimized precomputation table implementation of Korea block cipher standard ARIA. As an experimental result of attack on ARIA-128 implemented in Ubuntu environment, we show that the adversary can extract the 16 bytes last round key through Flush+Reload attack. Furthermore, the master key of ARIA can be revealed from last and first round key used in an encryption processing.

An Analytical Model for Performance Prediction of AES on GPU Architecture (GPU 아키텍처의 AES 암호화 성능 예측 분석 모델)

  • Kim, Kyuwoon;Kim, Hyunwoo;Kim, Huijeong;Huh, Taeyoung;Jung, Sanghyuk;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.89-96
    • /
    • 2013
  • The graphic processor unit (GPU) has been developed to process not only graphic data but also general system data. It shows a better performance than CPU in algorithm for 3D graphics and parallel program. In order to execute algorithm for CPU on GPU, we should understand about GPU architectures and rewrite program considering parallel processing capability and new memory model of GPU. For this reasons, a performance prediction model for the algorithm and its predicted performance through GPU system are required. These can predict problems in GPU application development or construct a performance evaluation standard for GPU. In this paper, we applied the AES encryption algorithms on our performance model and accomplished performance prediction with high accuracy under a heavy workload.

UTrustDisk: An Efficient Data Protection Scheme for Building Trusted USB Flash Disk

  • Cheng, Yong;Ma, Jun;Ren, Jiangchun;Mei, Songzhu;Wang, Zhiying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2276-2291
    • /
    • 2017
  • Data protection of removable storage devices is an important issue in information security. Unfortunately, most existing data protection mechanisms are aimed at protecting computer platform which is not suitable for ultra-low-power devices. To protect the flash disk appropriately and efficiently, we propose a trust based USB flash disk, named UTrustDisk. The data protection technologies in UTrustDisk include data authentication protocol, data confidentiality protection and data leakage prevention. Usually, the data integrity protection scheme is the bottleneck in the whole system and we accelerate it by WH universal hash function and speculative caching. The speculative caching will cache the potential hot chunks for reducing the memory bandwidth pollution. We adopt the symmetric encryption algorithm to protect data confidentiality. Before mounting the UTrustDisk, we will run a trusted virtual domain based lightweight virtual machine for preventing information leakage. Besides, we prove formally that UTrustDisk can prevent sensitive data from leaking out. Experimental results show that our scheme's average writing throughput is 44.8% higher than that of NH scheme, and 316% higher than that of SHA-1 scheme. And the success rate of speculative caching mechanism is up to 94.5% since the access pattern is usually sequential.

Security Mechanism of Agent for Effective Agro-Foods Mobile Commerce (농산물 모바일 상거래를 위한 효과적인 에이전트 보안 메커니즘)

  • Jung Chang-Ryul;Song Jin-Kook;Koh Jin-Gwang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1573-1581
    • /
    • 2006
  • To utilize actively the agent which is one of the elements of revitalization of Agro-Foods Mobile I-commerce, an essential prerequisite is agent security. IF using partial PKI(Public Key Infrastructure)-based confirmation mechanism providing security for the agent, the size of agent is becoming larger, the result of the transmission speed is slow, and the confirmation speed is tardy as well because of performing calculation of public keys such as RSA and needing linkage with the CA for the valid examination of certificates. This paper suggests a mechanism that can cross certification and data encryption of each host in the side of improving the problems of key distribution on agent by shaping key chain relationship. This mechanism can guarantee the problem of ky distribution by using agent cipher key(ACK) module and generating random number to fit mobile surroundings and to keep the secret of the agent. Suggested mechanism is a thing that takes into consideration security and efficiency to secure agent for the revitalization of M-Commerce, and is a code skill to make the agent solid and is a safe mechanism minimizing the problems of memory overflow.

An Efficient Hardware Implementation of Square Root Computation over GF(p) (GF(p) 상의 제곱근 연산의 효율적인 하드웨어 구현)

  • Choe, Jun-Yeong;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1321-1327
    • /
    • 2019
  • This paper describes an efficient hardware implementation of modular square root (MSQR) computation over GF(p), which is the operation needed to map plaintext messages to points on elliptic curves for elliptic curve (EC)-ElGamal public-key encryption. Our method supports five sizes of elliptic curves over GF(p) defined by the National Institute of Standards and Technology (NIST) standard. For the Koblitz curves and the pseudorandom curves with 192-bit, 256-bit, 384-bit and 521-bit, the Euler's Criterion based on the characteristic of the modulo values was applied. For the elliptic curves with 224-bit, the Tonelli-Shanks algorithm was simplified and applied to compute MSQR. The proposed method was implemented using the finite field arithmetic circuit with 32-bit datapath and memory block of elliptic curve cryptography (ECC) processor, and its hardware operation was verified by implementing it on the Virtex-5 field programmable gate array (FPGA) device. When the implemented circuit operates with a 50 MHz clock, the computation of MSQR takes about 18 ms for 224-bit pseudorandom curves and about 4 ms for 256-bit Koblitz curves.

Side-Channel Cryptanalysis on Stream Cipher HC-128 for Mobile Ad-Hoc Network Environments (이동 Ad-Hoc 네트워크 환경에 적합한 스트림 암호 HC-128의 부채널 안전성 분석)

  • Bae, KiSeok;Park, YoungHo;Moon, SangJae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The HC-128 stram cipher which selected for the final eSTREAM portfolio is suitable for mobile Ad-Hoc network environments because of the ability of high-speed encryption in restricted memory space. In this paper, we analyzed the vulnerability of side channel analysis attack on HC-128 stream cipher. At the first, we explain a flaw of previous theoretical analysis result which defined the complexity of side-channel attack of HC-128 stream cipher as 'low' and then re-evaluate the security against side-channel attack by estimating the concrete complexity for recovering the secret key. As a result, HC-128 stream cipher is relatively secure against side-channel attack since recovering the secret key have $2^{65}$ computation complexity which is higher than other stream cipher's one.