
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, Apr. 2017 2276
Copyright ⓒ2017 KSII

UTrustDisk: An Efficient Data Protection
Scheme for Building Trusted USB Flash

Disk

Yong Cheng, Jun Ma, Jiangchun Ren, Songzhu Mei, and Zhiying Wang
School of Computer Science and Technology
National University of Defense Technology

Changsha 410073 - China
[e-mail: ycheng@nudt.edu.cn]

*Corresponding author: Yong Cheng

Received August 13, 2015; revised March 19, 2016; accepted July 19, 2016;
published April 30, 2017

Abstract

Data protection of removable storage devices is an important issue in information security.
Unfortunately, most existing data protection mechanisms are aimed at protecting computer platform
which is not suitable for ultra-low-power devices. To protect the flash disk appropriately and efficiently,
we propose a trust based USB flash disk, named UTrustDisk. The data protection technologies in
UTrustDisk include data authentication protocol, data confidentiality protection and data leakage
prevention. Usually, the data integrity protection scheme is the bottleneck in the whole system and we
accelerate it by WH universal hash function and speculative caching. The speculative caching will
cache the potential hot chunks for reducing the memory bandwidth pollution. We adopt the symmetric
encryption algorithm to protect data confidentiality. Before mounting the UTrustDisk, we will run a
trusted virtual domain based lightweight virtual machine for preventing information leakage. Besides,
we prove formally that UTrustDisk can prevent sensitive data from leaking out. Experimental results
show that our scheme’s average writing throughput is 44.8% higher than that of NH scheme, and 316%
higher than that of SHA-1 scheme. And the success rate of speculative caching mechanism is up to
94.5% since the access pattern is usually sequential.

Keywords: Integrity Verification, Data Leakage Prevention, Removable Storage, Hash
Trees, Speculative Caching

A preliminary version (DOI: 10.1109/TrustCom.2011.49) of this paper appeared in TrustCom 2011, November
16-18, 2011, Changsha, China. This version includes a detailed description of the data leakage prevention and a
security analysis. Besides, an enriched experimental measurement is appended to illustrate the advantage of the
efficient data protection scheme. This research was supported by the National Natural Science Foundation of China
under Grants No. 61303191 and No. 61402508. We express our thanks to Wangyi Han who checked our
manuscript. The authors also gratefully acknowledge the anonymous reviews’ advices to the work, plus the editor’s
work for shepherding the paper through the reviewing process.

https://doi.org/10.3837/tiis.2017.04.024 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2277

1. Introduction

Nowadays, the USB flash disks are widely used for their portability, large capacity and cheap
price. Although these disks are playing an important role in data transferring and storing, they
also raise new threats in information security. Since the flash disk may carry private and
confidential data, even ordinary attacks may cause serious data tampering and information
leakages [1]. Take the data integrity verification for example, it is known that data integrity
protection is necessary and has been an utmost important issue in building trusted storage
system [2]. However, the possibility of the flash chip being accessed directly by general
equipment can lead to an easy compromising of the external storage by both software and
hardware tampers [3].

In this study, we will discuss how to achieve a trust-based USB flash disk, named
UTrustDisk [4][5]. UTrustDisk is a trust-based intelligent USB flash disk which offers data
integrity, confidentiality and privacy protection. It is made up of a controller and a flash chip.
The controller is actually an USBKey chip that has the similar function to the CPU in
computers. The flash chip is a normal chip without special protecting mechanisms and we
name it memory, as a more general designation, in the rest of the paper. More details about
UTrustDisk are presented in the next section.

We need a trusted base in order to build a trusted storage device. Taking the UTrustDisk as
the study case, we assume that the USBKey chip is trusted and the limited on-chip flash,
SRAM and EEPROM cannot be tampered. Besides, all the operations (such as hash and
encryption) are well protected and thus are safe from attacks. This is a reasonable assumption
since a lot of protection technologies are applied to USBKey industry [6]. The external flash is
untrusted and can be corrupted by special tools or viruses. In our scheme, the data stored in the
untrusted flash is encrypted first and then verified by hash trees. The symmetric key and the
roots of hash trees are kept in protected storage.

Hash trees [7] and Message Authentication Codes (MACs) [8] have been widely used in
data integrity protection [9][10][11]. But the efficiency of these methods has become the main
obstacle for applying in industry practice. More importantly, we need to deploy secure
mechanisms on ultra-low-power devices such as flash disk devices [12]. Therefore, we need to
improve the efficiency of the data integrity verification and this can be gained via the energy
scalable universal hash function [13] and speculative caching. An efficient data authentication
protocol will be proposed in Section 3 later.

Data confidentiality is protected by symmetric encryption in UTrustDisk. As the symmetric
data encryption algorithm is developed and mature, the remaining work is how to implement
the encryption. We have implemented the data encryption on two different levels of security:
strict encryption and fast encryption. The strict encryption means that all the data encryption
and decryption operations are done inside the UTrustDisk device, in other words, they are
operated by the USBKey chip. Given the limited processing capacity of the USBKey chip, we
also propose a fast encryption mode, which carries out the encrypting task on the host
computer. The symmetric encryption is performed transparently. In other words, the user of
UTrustDisk cannot fell the existence of data encryption. We use only one key for encrypting
and decrypting, and the key is storage insider the USBKey chip’s protected storage.

UTrustDisk has achieved data leakage prevention by adopting Trusted Virtual Domains
(TVDs) [14] and virtualization based separation [15]. The TVD is an isolated, transparent and

2278 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

credible operating domain which can process sensitive data securely. In respect that the TVD
is implemented by virtual machines and the UTrustDisk’s Resources are limited, we use
Feather-weight Virtual Machine (FVM) [16] in our scheme. Although the TVD mechanism
can prevent the sensitive data from leakage, there is still a risk that some malicious host may
break it down. Therefore, UTrustDisk will monitor the state of the TVD mechanism. Before
mounting the storage, UTrustDisk will check the running state of the TVD mechanism and
decrypt the ciphertext if and only if the TVD mechanism is running correctly. After mounting
the storage, UTrustDisk will monitor the running state of the TVD mechanism. Once
UTrustDisk detect that the TVD mechanism is interfered, it will terminate all accesses. The
details of data leakage prevention will be discussed in Section 4.

The main contribution is that we proposed a low energy, high efficiency data authentication
protocol and a data leakage prevention scheme. Compared with other existing USB flash disk
protection technologies such as Armordisk [17], UTrustDisk has protected almost all aspects
of data security. And the comparative experiment results show that our scheme is highly
efficient and more practical.

The rest of the paper is organized as follows. In the next section we describe previous works
and some related researches as the background. In section 3, we go on to discuss
authentication algorithm for efficient memory integrity protection. Section 4 presents data
leakage prevention mechanisms and security analysis. The performance evaluation of data
integrity protection is presented in section 5. And we concluded in Section 6.

2. Background
In this section we introduce the previous work from three aspects: UTrustDisk, hash trees and
universal hashing.

2.1 UTrustDisk
In order to address flash disk’s data security flaws, we have designed the UTrustDisk. Fig. 1
gives the architecture of UTrustDisk illustrating that it consists of hardware and software. This
device’s hardware is a combination of control chip, USBKey chip, and flash chip. And the
software is composed of Chip Operating System (COS) and Control Software (CS). Both COS
and CS are stored in chip memory and can’t be modified without special tools. The vital
procedures, e.g. data integrity verification and strict-mode encryption, are implemented in
COS. While the CS handles other critical operations such as TVDs, user authentication and
fast-mode encryption.

The on-chip memory includes three parts: SRAM, FLASH and E2PROM. These memories
can be treated as trusted storage according to our assumption before. The SRAM unit is used
for storing temporary data of (from) CPU. The FLASH unit is usually used to store programs,
libraries and data. The data stores in FLASH should not be changed frequently because its
write operation speed is slow. The EEPROM unit is used for storing programs or other data
which may be changed more frequently than FLASH.

UTrustDisk can provide data integrity, confidentiality and data leakage prevention. After
the control software starts up, an Isolated Execution Environment (IEE) is built for the sake of
executing untrusted processes. The data privacy is protected by IEE via file system filter,
network filter and memory filter. The data confidentiality is protected by encryption. The data
integrity protection is also achieved in control chip, and we will discuss the details later.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2279

F
la
sh
 C
hi
p

COS
Control Chip Host

Flash Interface Chip Memory

FLASH SRAM E2PROM

CPU
U

SB
 Interface

CS

Virtual
CD

Driver

……

A
utoR

un

Trusted Process

PKCS#11

Control Software

Isolated Execution Environment(IEE)
Untrusted Process

Sensitive Data
FS Filter IP Filter Memory Filter

Fig. 1. The architecture of UTrustDisk.

2.2 Hash Trees
Hash trees also named Merkle trees were proposed in [7] as a protocol to authenticate data
integrity efficiently. Fig. 2 illustrates the structure of a 3-ary hash tree adopted in data integrity
protection. A chunk means a variable-sized sequence of bytes, which is the unit for data
validating. A typical hash tree is organized as an m-ary tree and the nodes and leafs are
constructed into chunks. The leaf (named data chunk) in the tree contains the actual data, and
the hash chunk (or the inner node) stores the collision resistant hash value of all the following
m children-nodes. The hash result of the root chunk is stored in protected memory where it
cannot be tampered with. All other chunks are kept in untrusted memory which is protected via
hash trees.

…
Protected Memory

Untrusted Memory

Data Chunk

Hash Chunk
Root

1

2 3 4

5 6 7 8 9 10 11 12 13
Fig. 2. Hash trees for data integrity protection. The memory is divided into equal length blocks: data
chunks and hash chunks, both are resided in untrusted memory. The hash result of the root is kept in

protected memory which cannot be tampered with.

To check the data’s integrity of a data chunk or hash chunk, we need to 1) read the chunk
and compute its hash value, 2) compare the hash result with the original hash stored in its
parent chunk. These steps need to be repeated on the hash value recursively, until it reaches the
value stored in protected memory. If any mismatch is detected in this process, the data
integrity verification is failed. Similarly, to update the data in a chunk we need to check the
integrity of the chunk and then update all the nodes from it to the root. With a balanced tree,
the worst case time complexities of each read or write operation will be O(logm(N)) where N is
the size of the memory, and the corresponding memory overhead is 1/(m-1) [18].

2280 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

Merkle trees are widely used in storage and memory integrity protection. In [19],
Maheshwari et. al build trusted databases on untrusted storage by using hash trees. Gassend et.
al proposed a memory authentication scheme in [20] which was also based on Merkle trees,
and their scheme improved the performance significantly by using caches. In [21], Clarke et.
al proposed an offline verification scheme based on the incremental hashing [22], named
multiset hash functions, instead of SHA-1. Hu, Hammouri and Sunar used universal hash
function family NH to build a fast real-time memory authentication scheme [13], which is
much faster compared to similar schemes based on SHA-1. The universal hashing is usually
faster than others because it can generate the new hash incrementally [12][13].

2.3 Universal Hashing
Carter and Wegman proposed universal hashing in [23]. The main idea behind universal
hashing is to select the hash function at random from a carefully designed class of functions at
the beginning of execution. Using universal hashing can yield provably good performance and
security.

Let H be a finite collection of hash functions that map a given finite set A with size a to a
finite set B with size b. Let M represents the length of message string which is divided into m
blocks with length w. For a given hash function h H∈ and a pair of distinct message pair

,x y A∈ , the following function is defined: (,) 1h x yδ = if () ()h x h y= , and (,) 0h x yδ =
otherwise. For a given set of hash functions H, (,)H x yδ is defined as (,)hh H

x yδ
∈∑ . In other

words, (,)H x yδ counts the number of functions in H for which x and y collide. When a hash
function h is chosen randomly, the probability that two distinct inputs x and y yield a collision
equals (,)H x y Hδ [13]. We introduce the definitions of universal hash functions used in this
paper from [24]: A finite collection of hash functions :H h A B= → is said to be universal if
for every ,x y A∈ where x y≠ , : () () (,)Hh H h x h y x y H bδ∈ = = = .

Black et al introduced an almost universal hash function family called NH in [8]. But NH is
not the best solution in applications deployed in ultra-low power devices. Kaps, Yuksel and
Sunar proposed an energy scalable universal hashing named WH in [12]. In the same paper,
the experimental results show that WH can obtain substantial power savings of up to 59% and
a speedup of up to 7.4 times over NH.

3. Integrity Verification Algorithm

3.1 CP-ABE Algorithm
Hash trees are commonly used in data integrity protection as described in Section 2. However,
the overhead of hash trees is too huge to be applied to USB flash disks. Taking the 3-ary
Merkle tree in Fig. 2 as an example, one third of the memory will be consumed by hash results.
What’s more, the additional data access operations caused by verifying hash trees may become
the main bottleneck. Usually, the space overhead can be reduced vividly by increasing the
fanout m of Merkle tree and using universal hashing such as WH. And the space consumption
could be regarded as acceptable because the unprotected flash storage is very cheap. But the
additional data verifying operations is really sure a performance killer. For a typical flash chip
with size 4 GB, verifying a chunk may cause tens of read accesses.

In order to reduce the flash bandwidth pollution, we proposed a new scheme named
Speculative caching and WH-hashing scheme (SWHash). In this scheme we adopt WH

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2281

universal hash function for chunks hashing. WH’s hash result consumes half storage of NH,
which reduces the space overhead greatly. The MAC is generated by WH hash results (we call
it tags) of the chunk. All the memory will be partitioned into data chunks and hash chunks with
the same size. Then the chunks can be processed by the same WH hash processing. Finally, the
Merkle tree is built logically for protecting data integrity. Similar to other existing memory
authentication protocols, we also use caches for reducing accesses. However, the cache in the
USBKey processor is not large enough, and the hot chunk is often evicted by general chunks.
So we propose the speculative caching to promote the existing cache policy

Speculative caching strategy’s main idea is still hot chunk caching. In this scheme we
occupy an amount of on-chip memory (named cache too) to store the root chunk of the sub
hash tree which contains the hot chunk. Traditional cache policies work well when there are a
lot of hot spots. The UTrustDisk is a flash disk which is used for storing and transferring files.
Its access pattern is different from general applications. Because the data stored in the
UTrustDisk is usually located in adjacent chunks, the read/write operation occurs on
sequential chunks sequentially. So the hot spot is not obvious when reading file from
UTrustDisk or writing to it. Since hot chunks are changing according to applications, we
improve the cache policy by using speculative caching technique. We take the hash tree in Fig.
2 as an example to illustrate the speculative strategy. Given a file stored in chunk 6, 7 13, and
now we consider the read operation. Suppose chunk 2 is already cached in on-chip memory,
when beginning to cache chunk 3, we can cache the chunk 4 speculatively at the same time.
The speculative operation can reduce the additional memory accesses caused by integrity
verification. To describe our scheme more clearly later, we define the chunk 3 as the
left-neighbor of chunk 4 and the chunk 4 as the right-neighbor of chunk 3.

3.2 SWHash Algorithm
In the SWHash scheme, the memory is partitioned into chunks and a l-level Merkle tree is built
up for integrity verification. In order to implement speculative caching, a counter Cx is added
to every chunk Mx. The counter Cx records the number of Mx’s left-neighbors. When Cx
reaches the threshold, Mx’s right-neighbor will be cached speculatively.The tag Tx is cached
for reducing the redundant operations and pre-computing is adopted for speedup. We use the
32-bit WH universal hash function twice and then concatenate the hash values to obtain a 64
bits tag for each chunk. According to [12], the final hash result’s collision probability is equal
to 2-64.

We outline the basic idea of SWHash protocol without the speculative caching and
pre-computing in Fig. 3. And the full scheme of SWHash algorithm is presented by Algorithm
1 to Algorithm 5.

Algorithm 1: Initialization (called when the scheme is startup)

1. Initialize the cache.
2. For each chunk Mx in untrusted memory, calculate the hash value of each chunk Mx,

and name it using the tag Tx. If the chunk Mx is the root (the topmost chunk), save Tx
in protected memory; otherwise keep it in parental chunk.

2282 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

32-bit WH

32-bit WH

Key

Shift

32 bits 32 bitscnt

Data/Hash Chunk ……

64-bit Tag ……
32-bit

Counter ……

Is root chunk?

Concatenate Tags
into Hash Chunks

No
Yes Store the Tag in

Protected Memory

Terminated
Fig. 3. Outline of the SWHash basic scheme. The data or hash chunk is hashed by 32-bit WH hash

function twice to generate a tag. And the tags are concatenated and partitioned into chunks.

Algorithm 2: ReadAndCheck(x) (called when the processor reads data x in chunk Mx)
1. If the chunk Mx is cached, return the cached data x. If Cx reaches the threshold, and

Mx’s right-neighbor Mz exists, put Mz in cache and set Cz = Cx +1. Then set Cx = 0.
Operation completed.

2. Call ReadAndCheckChunk(Mx).
3. Put the chunk Mx into the cache. Return the data x.
4. Put the tag Tx in cache. Generate a counter Cx and set Cx = 0.
5. If Mx’s left-neighbor My exists, set Cx = Cy+1.

Algorithm 3: ReadAndCheckChunk(Mx) (called when reads chunk Mx and checks it)

1. Return Mx to the caller for speculative execution.
2. If Mx is the root, read Tx from protected memory; otherwise call

ReadAndCheck(Tx).
3. Compute the hash value Hx of the chunk Mx. If Hx ≠ Tx, the integrity check fails.
4. If the chunk Mx is the root, the integrity check succeed; otherwise, raise an

exception.

Algorithm 4: Write(x) (called when the processor writes data x in chunk Mx)

1. If the chunk Mx is cached, modify the cached data x directly. If Cx reaches the
threshold, and Mx’s right-neighbor Mz exists, put Mz in cache and set Cz = Cx + 1.
Then set Cx = 0. Operation completed.

2. Call ReadAndCheckChunk(Mx).
3. Put the chunk Mx and the tag Tx into the general cache. Generate a counter Cx and set

Cx = 0. If Mx’s left-neighbor My exists, set Cx = Cy + 1.
4. Modify the data x.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2283

Algorithm 5: WriteBack(Mx) (called when the chunk Mx is evicted and it is dirty)
1. Write the chunk Mx to memory.
2. Read the tag Tx from cache.
3. Update the Tx incrementally to T'x.
4. If the chunk Mx is the root, update Tx to T'x in protected memory; otherwise call

Write(T'x).

4. Data Leakage Prevention
As described before, data confidentiality is protected by UTrustDisk’s encryption mechanism
and we only store encrypted data in the flash chip. So UTrustDisk can prevent data leakage
from unauthorized attacks. However, when the authorized user use UTrustDisk on an
untrusted platform, the sensitive data will have to be decrypted and exposed to the host. So
there is still a risk that some attackers may be able to sniff the private information.

4.1 Dynamic Isolation Requirements
The dynamic isolation is implemented based on light weight virtual machine. Fig. 4 illustrates
the dynamic isolation requirements. At the startup time, the trusted process P1 is running under
the monitor mode in IEE and P2 running in untrusted host domain. There are three types of
data leakage which need to be prevented by dynamic isolation as follows, and the
corresponding solution is also listed out.

1. Untrusted process P2 trying to read sensitive data d1: P2 will be migrated into IEE and
renamed as P'2. P'2 is run under the monitor mode and authorized to access d1.

2. Trusted process P1 trying to write normal data d2: d2 will be copied into UTrustDisk and
we rename it as d'2. d'2 is protected by UTrustDisk and no sensitive data will be leaked
out from P1.

3. Trusted process P1 trying to send a message to Untrusted process P2: P2 will be migrated
into IEE and run under the monitor mode.

Sensitive Data(d1) Normal Data(d2)

UTrustDisk Host Platform

Process(P2)Process(P1)

Sensitive Data(d2')

Process(P2')

 Isolated Execution Environment Host Domain

 (3)

 (1) (2)

copy

migrate

Fig. 4. Illustration of dynamic isolation requirements.

2284 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

4.2 Data Leakage Prevention Scheme
In order to prevent information leakage in the usage stage, we implement dynamic isolation in
IEE. IEE is an isolated execution environment based on TVDs, and processes running in IEE
can be treated as trusted. We implement IEE based on FVM [25]. Most existing TVDs is built
on hardware-level virtual machine systems, which costs lots of storage and computation
capability [15][26]. In [27], W. Sun implemented an isolated file system which could redirect
the sensitive data’s operations to a security domain. And Y. Yu [25] expanded the isolation to
registry, network, system call and so on.

UTrustDisk redirects file accesses to flash chip and isolates all related operations on registry,
memory and networks. The file access redirection is carried out by file system filter driver, for
example, we use minifilter for filtering unauthorized operations. Based on NDIS network filter
and Detours APIs, UTrustDisk implements the network filter. Using the network filter, we can
prevent data leak out by the malicious softwares.

Fig. 5 illustrates the data leakage prevention in UTrustDisk. At first the untrusted process is
running in normal mode and it can access all the system resources such as storage, network
and registry. Once the process accesses the sensitive data, it will be transformed into IEE and
begin to run in the monitor mode. In the monitor mode, the process cannot access the normal
resource any more, and all the related access will be redirect to UTrustDisk and other fake
resources. The fake resources is built by TVDs, and the related data is stored inside
UTrustDisk.

normal mode

in UTrustDisk

network fake
networkstorage registry fake

registry

monitor mode

sensitive
data

untrusted process

normal access
unauthorized access
redirected access

Fig. 5. Outline of data leakage prevention.

4.3 Security Analysis
The main purpose of the above scheme is to protect data from leakage. Thus we can describe
the security through a question: could the data inside UTrustDisk be leaked out without going
against the IEE. The security analysis is based on the model of secure information flow [28].

Let FS and FO represent the file sets inside and outside UTrustDisk, and let PS and PO be
the collections of processes inside and outside IEE. And we use ta b→ to represent that there
is a data flow from a to b at time t, a and b are files or processes. According to the definition of
IEE, there are four rules in UTrustDisk.

Rule 1: For each process p inside IEE, p can not running outside until its termination.
Therefore we have

0 0,tp PS t t∀ ∈ ≥ , there is no tp PO∈ .

Rule 2: For each process p outside IEE, once p access the file inside UTrustDisk, it will be
turn to run inside IEE. That is

0 0 0
, , ,t t t t op PO f FS f p p PS t t∀ ∈ ∀ ∈ → ⇒ ∈ ≥ .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2285

Rule 3: For each process p inside IEE, p’s access to system resources will be redirect to
UTrustDisk, so , ,p PS f FO p∀ ∈ ∀ ∈ try to access→ (')f fake f⇒ and 'f FS∈ , 'p f→ .
Rule 4: For each process p outside IEE, once there is a data flow from p to p' and 'p PO∈ , p'
will be turn to run inside IEE. So we have

0 0 0 0, ' , ' ' ,t t t tp PS p PO p p p PS t t∀ ∈ ∀ ∈ → ⇒ ∈ ≥ .

Based on the rules above, we can introduce the security theorem of UTrustDisk’s leakage
prevention.
Theorem 1. For every file inside UTrustDisk, it will not be leak out. We can describe it
formally as follows:

0 0 0, ' ,t tf FS f FO t t∀ ∈ ∀ ∈ ≥ , there is no 'tf f→ .

Proof.
We assume that this theorem is not established,

0 0 0, ' ,t tf FS f FO t t∀ ∈ ∀ ∈ ⇒ ∃ ≥ 'tf f→ .
Because all file accesses are operated by processes, we can present the data flow as follows.

0 00 1 0 1 0, ,..., (), ... ,..., ', 0n n t n tp p p PS PO t t t t f p p f n∃ ∈ ≤ ≤ ≤ ⇒ → → ≥ .

According to Rule 2,
00 tp PS∈ , and according to Rule 4, we derive out that 1,..., n tp p PS∈ .

As described in Rule 1, np will be inside PS, so we can conclude that 'f FS∈ by Rule 3,
which is conflicted with 'f FO∈ . So this theorem is established. ■

5. Performance Evaluation
We evaluate the performance of SWHash and data leakage prevention scheme by the
UTrustDisk prototype. The UTrustDisk prototype contains an USBKey chip and a 4GB flash
chip. The USBKey chip is produced by Nationz Technologies Company [6], and the product
model is Z32H256D32U. The flash chip is produced by SAMSUNG and the product model is
K9LBG08U0M [29].

All experiments were performed on a 2-core Intel CoreTM 2 T9500 (2.60 GHz) with 2 GB
of memory (667 MHz) running Windows 7 Ultimate (Service Pack 1). UTrustDisk’s main
parameters are listed in Table 1. There is a 32KB EEPROM in USBKey chip. And the block
size of write/read operation in COS is 512 bytes, so the chunk size is set to 512 bytes too.

Table 1. The main parameters of utrustdisk prototype.

Symbol Value Description
N 31 number of hash trees
L 4 number of hash trees’ level
M 4 GB size of untrusted flash chip
T 8 bytes size of tag
B 512 bytes size of data/hash chunk

The experiment tool is ATTO Disk Benchmark (version 2.46) [30]. The ATTO Disk

Benchmark performance measurement tool can provide the highest level of performance to
UTrustDisk with various transfer sizes and test lengths for reads and writes. In our
experiments the related options are customized as follows: the transfer sizes are set from 0.5
KB to 8 MB; the transfer length is 1 GB; the queue depth is 4 and the overlapped I/O is
selected.

2286 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

In order to evaluate the optimization result of speculative caching and pre-computing, we
turn off them to form a basic scheme. We test the read/write performance of the basic scheme
and SWHash scheme. The experimental results are shown in Fig. 6 and Fig. 7. The basic and
SWHash scheme are compared with naive accesses, which name none in the figure. Due to
speculative caching and pre-computing improvements, SWHash increases the read and write
speed up to 13% and 28% over basic scheme. However, when the data size is below 2 KB, the
SWHash consumes more time than the basic scheme due to inefficient speculation. SWHash’s
average write performance penalty is 13.76% and the average read overhead is 10.18%.

We also test the SHA-1 scheme and NH scheme as contrast to evaluate SWHash’s
efficiency. The SHA-1 scheme is described in [31] and the cache is also employed for speed.
The NH scheme is presented in [12] and the cache is also adopted. Fig. 8 presents the write
speed comparison among them. Because the conclusion derived from read experiments is
similar to write, we only present the write results. This experiment shows that SWHash is
much better than SHA and NH scheme. When compared to a NH scheme, our prototype-based
results show that SWHash can increase write throughput up to 52%. When compared to
SHA-1 scheme, it increases write speed by up to 248%-350%.

To evaluate the speedup of speculative caching, we record the success rate of speculation. A
success speculation means a chunk is selected to cache speculatively and it has been accessed
before evicted. So the success rate is the proportion of the mount of success speculation to all
the cache chunks. Fig. 9 illustrates the results. When the data transfer size reaches 8 KB, the
speculation speed up significantly. And the success rate of speculative caching reaches 94.5%.

We also evaluate the overhead of data leakage prevention scheme. We turn off the SWHash
scheme in this evaluation. The experimental results are shown in Fig. 10. The none model
means turning off the data leakage prevention mechanism and protected model means using it.
The average write penalty caused by the data leakage prevention scheme is about 15.31%. The
main reason of this penalty is that the implementation of IEE causes additional overhead such
as processes migration.

0

1

2

3

4

5

6

7

da
ta

 w
rit

e
sp

ee
d

(M
B

/s)

data transfer size (KB)

none

SWHash scheme

basic scheme

 Fig. 6. The write performance of the basic scheme and SWHash scheme.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2287

0

5

10

15

20
da

ta
 re

ad
 sp

ee
d

(M
B

/s
)

data transfer size (KB)

none
SWHash scheme
basic scheme

 Fig. 7. The read performance of the basic scheme and SWHash scheme.

0

1

2

3

4

5

6

7

da
ta

 w
rit

e
sp

ee
d

(M
B

/s
)

data transfer size (KB)

SWHash scheme
NH scheme
SHA-1 scheme

 Fig. 8. The write speed comparison among SHA-1, NH and SWHash.

2288 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

th
e

su
cc

es
s r

at
e

of

sp
ec

ul
at

io
n

data transfer size (KB)
 Fig. 9. The success rate of speculation.

0

1

2

3

4

5

6

7

da
ta

 w
rit

e
sp

ee
d

(M
B

/s
)

data transfer size (KB)

none
protected

 Fig. 10. The overhead of data leakage prevention scheme.

6. Conclusion
In this paper, we proposed UTrustDisk for protecting the data security in flash. The advantages
of UTrustDisk are obvious: First, the security of data confidentiality and leakage prevention
can be proved; Second, the mechanism of integrity verification is optimized, achieving a great
speedup over the SHA-1 and NH scheme.

In the future we will optimize our scheme by parallelism. Nowadays the multi-core
processor is wild used, if the integrity verification and data encryption operations can be
allocated to cores evenly, we will achieve a significant speedup.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2289

References
[1] Computer Security Institute, 16th annual CSI computer crime and security survey executive

summary, http://www.gocsi.com, 2011. Article (CrossRef Link)
[2] Trusted Computing Group, TCG storage architecture core specification,

http://www.trustedcomputinggroup.org, 2011. Article (CrossRef Link)
[3] F. Hou, D. Gu, N. Xiao, and Y. Tang, “Data privacy and integrity appropriate for disk protection,”

in Proc. of the 8th IEEE Int. Conf. on Computer and Information Technology, pp.414-419, July
8-11, 2008. Article (CrossRef Link)

[4] Y. Cheng, Z. Wang, J. Wu, S. Mei, J. Ren, and J. Ma, “SWHash: An Efficient Data Integrity
Verification Scheme Appropriate for USB Flash Disk,” in Proc. of the 10th Int. Conf. on Trust,
Security and Privacy in Computing and Communications, pp.381-388, November 16-18, 2010.
Article (CrossRef Link)

[5] J. Ma, Z. Wang, J. Ren, C. Liu, J. Wu, Y. Cheng, and S. Mei, “Trsf: Implementing active
removable storage protection via trusted virtual domains,” Chinese Journal of Electronics, vol. 40,
no. 2, pp.376-383, February, 2011. Article (CrossRef Link)

[6] Nationz Technologies Company, Secure storage chips,
http://www.nationz.com.cn/Products2.aspx?id=36, 2011. Article (CrossRef Link)

[7] R.C. Merkle, “Protocols for public key cryptosystems,” in Proc. of the 1980 IEEE Symposium on
Security and privacy, pp.122-134, April, 1980. Article (CrossRef Link)

[8] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “Umac: Fast and secure message
authentication,” in Proc. of the 19th Annual International Cryptology Conference (CRYPTO’99),
pp.79–79, August 15-19, 1999. Article (CrossRef Link)

[9] R. Huang and G.E. Suh, “Ivec: off-chip memory integrity protection for both security and
reliability,” ACM SIGARCH Computer Architecture News, vol. 38, no. 3, pp.395-406, June, 2010.
Article (CrossRef Link)

[10] W. Shi, H.H.S. Lee, M. Ghosh, and C. Lu, “Architectural support for high speed protection of
memory integrity and confidentiality in multiprocessor systems,” in Proc. of the 13th Int. Conf. on
Parallel Architectures and Compilation Techniques, pp.123-134, September 29-October 3, 2004.
Article (CrossRef Link)

[11] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Improving cost, performance, and
security of memory encryption and authentication,” ACM SIGARCH Computer Architecture News,
vol. 34, no. 2, pp.179-190, May, 2006. Article (CrossRef Link)

[12] J.P. Kaps, K. Yuksel, and B. Sunar, “Energy scalable universal hashing,” IEEE Transactions on
Computers, vol. 54, no. 12, pp.1484-1495, December, 2005. Article (CrossRef Link)

[13] Y. Hu, G. Hammouri, and B. Sunar, “A fast real-time memory authentication protocol,” in Proc. of
the 3rd ACM workshop on Scalable trusted computing, pp.31-40, October 27-31, 2008.
Article (CrossRef Link)

[14] J.L. Griffin, T. Jaeger, R. Perez, R. Sailer, and L. Van Doorn, “Trusted virtual domains: Toward
secure distributed services,” in Proc. of the 1st IEEE Workshop on Hot Topics in System
Dependability, June 28-July 1, 2005. Article (CrossRef Link)

[15] I. Burdonov, A. Kosachev, and P. Iakovenko, “Virtualization-based separation of privilege:
working with sensitive data in untrusted environment,” in Proc. of the 1st EuroSys Workshop on
Virtualization Technology for Dependable Systems, pp.1-6, April 1-3, 2009.
Article (CrossRef Link)

[16] Y. Yu, “OS-level virtualization and its applications,” PhD thesis, State University of New York At
Stony Brook, 2009. Article (CrossRef Link)

[17] Nationz Technologies Company, Armordisk (security usbkey) encrypted storage,”
http://www.nationz.com.cn/Solutions2.aspx?id=4, 2011. Article (CrossRef Link)

[18] D.Williams and E.G. Sirer, “Optimal parameter selection for efficient memory integrity
verification using merkle hash trees,” in Proc. of the 3rd IEEE Int. Symposium on Network
Computing and Applications, pp.383-388, August 30- September 1, 2004. Article (CrossRef Link)

http://www.gocsi.com/
http://www.trustedcomputinggroup.org/
http://dx.doi.org/doi:10.1109/CIT.2008.4594711
http://dx.doi.org/doi:10.1109/TrustCom.2011.49
http://en.cnki.com.cn/Article_en/CJFDTotal-DZXU201202027.htm
http://www.nationz.com.cn/Products2.aspx?id=36
http://dx.doi.org/doi:10.1109/SP.1980.10006
http://dx.doi.org/doi:10.1007/3-540-48405-1_14
http://dx.doi.org/doi:10.1145/1815961.1816015
http://dx.doi.org/doi:10.1109/PACT.2004.1342547
http://dx.doi.org/doi:10.1109/ISCA.2006.22
http://dx.doi.org/doi:10.1109/TC.2005.195
http://dx.doi.org/doi:10.1145/1456455.1456461
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.5148&rep=rep1&type=pdf
http://www.burdonov.ru/doctor/papers_2009/Virtualization_based_separation_of_privilege_Working_with_sensitive_data_in_untrusted_environment/Virtualization_based_separation_of_privilege_Working_with_sensitive_data_in_untrusted_environment.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.4527&rep=rep1&type=pdf
http://www.nationz.com.cn/Solutions2.aspx?id=4
http://dx.doi.org/doi:10.1109/NCA.2004.1347805

2290 Yong et al.: UTrustDisk: An Efficient Trusted USB Flash Disk

[19] U. Maheshwari, R. Vingralek, and W. Shapiro, “How to build a trusted database system on
untrusted storage,” in Proc. of the 4th Conf. on Symposium on Operating System Design &
Implementation, pp.1-10, October 22-25, 2000. Article (CrossRef Link)

[20] B. Gassend, G.E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches and hash trees for
efficient memory integrity verification,” in Proc. of the Ninth Int. Symposium on
High-Performance Computer Architecture, pp.295-306, February 8-12, 2003.
Article (CrossRef Link)

[21] Y. Hu and B. Sunar, “An improved memory integrity protection,” in Proc. of the 3rd Int. Conf. on
Trust and Trustworthy Computing, June, 2010. Article (CrossRef Link)

[22] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography: The case of hashing and
signing,” in Proc. of the 14th Annual International Cryptology Conference (CRYPTO’94), pp.
216–233, August 21-25, 1994. Article (CrossRef Link)

[23] J.L. Carter and M.N. Wegman, “Universal classes of hash functions,” Journal of computer and
system sciences, vol. 18, no. 2, pp.143-154, 1979. Article (CrossRef Link)

[24] W. Nevelsteen and B. Preneel, “Software performance of universal hash functions,” in Proc. of the
1999 Int. Conf. on the Theory and Application of Cryptographic Techniques (EUROCRYPT’99),
pp.24-41, May 2-6, 1999. Article (CrossRef Link)

[25] Y. Yu, F. Guo, S. Nanda, L. Lam, and T. Chiueh, “A feather-weight virtual machine for windows
applications,” in Proc. of the 2nd Int. Conf. on Virtual Execution Environments, pp.24-34, June
14-16, 2006. Article (CrossRef Link)

[26] L. Catuogno, H. Lohr, M. Manulis, A.R. Sadeghi, and M. Winandy, “Transparent mobile storage
protection in trusted virtual domains,” in Proc. of the 23rd Conf. on Large Installation System
Administration, pp.1-12, November 1-6, 2009. Article (CrossRef Link)

[27] W. Sun, Z. Liang, R. Sekar, and VN Venkatakrishnan, “One-way isolation: An effective approach
for realizing safe execution environments,” in Proc. of the 2005 Network and Distributed Systems
Symposium, February 3-4, 2005. Article (CrossRef Link)

[28] D.E. Denning, “A lattice model of secure information flow,” Communications of the ACM, vol. 19,
no. 5, pp.236-243, May, 1976. Article (CrossRef Link)

[29] Samsung, “Products flash,” http://www.samsung.com/global/business/semiconductor/products/fla
sh/Products/Flash.html, 2011. Article (CrossRef Link)

[30] ATTO Technology Inc, “Disk benchmark,” http://www.attotech.com/products, 2011.
Article (CrossRef Link)

[31] M. Etzel, S. Patel, and Z. Ramzan, “Square hash: Fast message authentication via optimized
universal hash functions,” in Proc. of the 19th Annual International Cryptology Conference
(CRYPTO’99), pp.786-786, August 15-19, 1999. Article (CrossRef Link)

http://static.usenix.org/event/osdi00/full_papers/maheshwari/maheshwari_html/
http://dx.doi.org/doi:10.1109/HPCA.2003.1183547
http://link.springer.com/chapter/10.1007%2F978-3-642-13869-0_19
http://dx.doi.org/doi:10.1007/3-540-48658-5_22
http://dx.doi.org/doi:10.1145/800105.803400
http://dx.doi.org/doi:10.1007/3-540-48910-X_3
http://dx.doi.org/doi:10.1145/1134760.1134766
https://www.usenix.org/legacy/events/lisa09/tech/full_papers/lisa09proceedings.pdf?origin%3Dpublication_detail%23page=167
http://www.mime.eng.utoledo.edu/%7Ewsun/papers/ndss05.pdf
http://dx.doi.org/doi:10.1145/360051.360056
http://www.samsung.com/global/business/semiconductor/products/flash/Products/Flash.html
http://www.attotech.com/products
http://dx.doi.org/doi:10.1007/3-540-48405-1_15

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017 2291

Yong Cheng is an an engineer fellow at National University of Defense Technology,
Chang’sha, P. R. China. He received his PhD degree in Computer Science and
Technology from National University of Defense Technology. His current research
interests include the storage security in public cloud services, trusted computing in public
cloud or other un-trusted devices, cryptographic algorithm design for data security, data
leakage prevention, etc.

Jun Ma is an assistant professor at National University of Defense Technology,
Chang'sha, Hu'nan, P.R.China. He received his PhD degree in Computer Science and
Technology from National University of Defense Technology. His current research
interests include the security of operating system and cloud storage, trusted computing
and data security, etc.

Jiangchun Ren is an associate professor in National University of Defense
Technology, Changsha , P.R.China. He received his PHD degree in computer science and
technology from National University of Defense Technology. His current research
interests mainly include trusted computing, storage systems (in particular the cloud
storage), data management and computer architecture (in particular the trusted
computing).

Songzhu Mei is an assistant research fellow at National University of Defense
Technology, Chang’cha P. R. China. He received his PhD degree in Computer Science
and Technology from National University of Defense Technology. His current research
interests include the trusted computing, distributed system, cloud computing, etc.

Zhiying Wang is a professor at National University of Defense Technology, Chang’cha
P. R. China. He received his PhD degree in Computer Science and Technology from
National University of Defense Technology. His current research interests include
information system security, advanced computer architecture, microprocessor design,
asynchronous architecture design technology, etc.

