DOI QR코드

DOI QR Code

An Efficient Hardware Implementation of Square Root Computation over GF(p)

GF(p) 상의 제곱근 연산의 효율적인 하드웨어 구현

  • Choe, Jun-Yeong (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Shin, Kyung-Wook (School of Electronic Engineering, Kumoh National Institute of Technology)
  • Received : 2019.12.10
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

This paper describes an efficient hardware implementation of modular square root (MSQR) computation over GF(p), which is the operation needed to map plaintext messages to points on elliptic curves for elliptic curve (EC)-ElGamal public-key encryption. Our method supports five sizes of elliptic curves over GF(p) defined by the National Institute of Standards and Technology (NIST) standard. For the Koblitz curves and the pseudorandom curves with 192-bit, 256-bit, 384-bit and 521-bit, the Euler's Criterion based on the characteristic of the modulo values was applied. For the elliptic curves with 224-bit, the Tonelli-Shanks algorithm was simplified and applied to compute MSQR. The proposed method was implemented using the finite field arithmetic circuit with 32-bit datapath and memory block of elliptic curve cryptography (ECC) processor, and its hardware operation was verified by implementing it on the Virtex-5 field programmable gate array (FPGA) device. When the implemented circuit operates with a 50 MHz clock, the computation of MSQR takes about 18 ms for 224-bit pseudorandom curves and about 4 ms for 256-bit Koblitz curves.

본 논문에서는 GF(p) 상에서 모듈러 제곱근 (MSQR) 연산의 효율적인 하드웨어 구현에 대해 기술한다. MSQR 연산은 타원곡선 기반의 EC-ElGamal 공개키 암호를 위해 평문 메시지를 타원곡선 상의 점으로 매핑하기 위해 필요하다. 본 논문의 방법은 NIST 표준으로 규정된 5가지 크기의 GF(p) 타원곡선을 지원하며, 192-비트, 256-비트, 384-비트 그리고 521-비트 크기의 Kobliz 곡선과 슈도 랜덤 곡선들은 모듈러 값의 특성을 기반으로 오일러 판정법을 적용하고, 224-비트 크기의 경우에는 Tonelli-Shanks 알고리듬을 간략화시켜 적용하였다. 제안된 방법을 ECC 프로세서의 32-비트 데이터 패스를 갖는 유한체 연산회로와 메모리 블록을 이용하여 구현하였으며, FPGA 디바이스에 구현하여 하드웨어 동작을 검증하였다. 구현된 회로가 50 MHz 클록으로 동작하는 경우에, 224-비트 슈도 랜덤 곡선의 경우에는 MSQR 계산에 약 18 ms가 소요되고, 256-비트 Kobliz 곡선의 경우에는 약 4 ms가 소요된다.

Keywords

References

  1. N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, vol.48, no.177, pp. 203-209, 1987. DOI: 10.1090/S0025-5718-1987-0866109-5
  2. National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS), FIPS 186-3, 2009.
  3. SECG SEC1, Elliptic Curve Cryptography, Standards for Efficient Cryptography Group, ver.2, 2009, http://www.secg.org/download/aid-780/sec1-v2.pdf.
  4. V. Gayoso Martinez, F. Hernandez A lvarez, L. Hernandez Encinas and C. Sanchez A vila, "A comparison of the standardized versions of ECIES," 2010 Sixth International Conference on Information Assurance and Security, Atlanta, pp.1-4, 2010. DOI:10.1109/ISIAS.2010.5604194
  5. K. Rabah, "Elliptic Curve ElGamal Encryption and Signature Schemes," Information Technology Journal, vol.4, no.3, pp.299-306, 2005. DOI: 10.3923/itj.2005.299.306
  6. T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms," IEEE Transactions on Information Theory, vol.31, no.4, pp.469-472, 1985. DOI: 10.1109/TIT.1985.1057074
  7. W. Trappe, and L. C. Washington. Introduction to Cryptography with Coding Theory. 2nd Edition, Prentice Hall, 2006.
  8. Z. E. Dawahdeh, S. N. Yaakob and A. M. Sagheer, "Modified ElGamal Elliptic Curve Cryptosystem using Hexadecimal Representation," Indian Journal of Science and Technology, vol.8, No.15, pp.1-7, 2015. DOI: 10.17485/ijst/2015/v8i15/64749
  9. B. King, "Mapping an Arbitrary Message to an Elliptic Curve when Defined over GF(2^n)," International Journal of Network Security, vol.8, no.2, pp.169-176, 2009. DOI: 10.1016/j.jnca.2015.11.011
  10. E. Bach and K. Huber, "Note on Taking Square-Roots Modulo N," IEEE Transactions on Information Theory, vol.45, no.2, pp.807-809, 1999. DOI: 10.1109/18.749034
  11. "Computing square roots mod p,"http://cours e1.winona.edu/eerrthum/13Spring/SquareRoots.pdf
  12. D. Shanks, "Five Number-Theoretic Algorithms," Proceedings of the Second Manitoba Conference on Numerical Mathematics, Congressus Numerantium, no.VII, pp.51-70, 1973.
  13. G. Tornaria, "Square roots modulo p," in LATIN 2002: Theoretical Informatics, S. Rajsbaum, Ed. Berlin, Germany: Springer, pp.430-434, 2002. DOI: 10.1007/3-540-45995-2_38
  14. G. Adj and F. Rodríguez-Henríquez, "Square Root Computation over Even Extension Fields," IEEE Transactions on Computers, vol.63, no.11, pp.2829-2841, 2014. DOI: 10.1109/TC.2013.145
  15. S. H. Lee and K. W. Shin, "An Areaefficient Design of ECC Processor Supporting Multiple Elliptic Curves over GF($_p$) and GF($2^m$)," Proceedings of Conference on Korea Information and Communication Engineering, vol.23, no.1, pp.254-256, 2019. DOI: 10.1109/ACCESS.2019.2958491