• Title/Summary/Keyword: Membrane vesicle

Search Result 156, Processing Time 0.033 seconds

Effect of Mammalian Spermatozoa on In Vitro Maturation of Porcine Germinal Vesicle Oocyte in Chemically Defined Medium

  • Kang, Sung-Ryoung;Kim, Byung-Ki
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.72-72
    • /
    • 2002
  • Oocytes maturation, characterized by germinal vesicle (GV) breakdown, formation of the first meiotic spindle, expulsion of the first polar body and arrest in metaphase of second meiotic division (MII), occurs in preovulatory follicles in response to the surge of gonadotropin and leads to an ovulated oocyte in vivo. However, meiotic resumption in vitro occurs spontaneously following removal of cumulus-oocytes complexes (COCs) from the follicle. (omitted)

  • PDF

Effect of Progesterone on the Germinal Vesicle Break'-down of Mouse Oocytes in Vitro (배양중에 있는 생쥐 여포난자(濾胞卵子)의 핵붕괴(核崩壞)(Germinal Vesicle Break-down)에 미치는 Progesterone의 영향에 관하여)

  • Cho, Wan-Kyoo;Kwon, Hyuk-Bang;Chung, Soon-O
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 1974
  • In the present studies, effect of progesterone on the germinal vesicle break-down of the mouse oocytes cultured in the micro tube was investigated. The results obtained are as follows: As dose of progesterone in the medium rose, accordingly the break-down of the germinal vesicle was suppressed. It was found that $ED_{50}$ was 15.7 ${\mu}g$/ml, and $ED_{90}$ 60.7 ${\mu}g$/ml of progesterone. The dose suppressing the oocyte maturation was apparently higher than that on the rabbit or on the mouse embryonal development. The inhibiting effect of progesterone on the GVBD was reversible. The germinal vesicle of the oocytes were broken down immediately in the medium upon removal of the hormone. Progesterone stops meiosis at any stage upon administration, while dbe AMP or theophylline supresses only the break-down of the nuclear membrane. Recovering of the meiotic division of the oocytes once exposed to progesterone was delayed a little. The inhibiting action of progesterone was not altered by adding more pyruvate or in the presence of higher concentration of the mineral ions in the culture medium.

  • PDF

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

A Study on Mobility Gradients and Phase Transitions in N-propyl-N,N-dimethylethanolamine Reaction (N-propyl-N,N-dimethylethanolamine 반응에서 유동성 변화와 상전이에 관한 연구)

  • Kim, Ki-Jun;Sung, Wan-Mo;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.165-169
    • /
    • 2015
  • N-propyl-N,N-dimethylethanolamine was directly ultrasonicated in acidic water for 6 minute to give clear stock solutions. The catalytic hydrolysis of N-propyl-N,N-dimethylethanolamine was studied at $30{\sim}55^{\circ}C$ in the presence of uni-lamellar vesicle and mixture of uni- and multi-lamellar aggregates. The difference of rate between uni- and mixture was observed, where uni-lamellar reaction was more catalytic effect. The phase transition temperature of vesicle was $37{\sim}44^{\circ}C$. The particle size of multi-lamellar than that of uni-lamellar of biological membrane was measured more largely.

SNARE Assembly and Membrane Fusion: A Paramagnetic Electron Magnetic Resonance Study

  • Kweon, Dae-Hyuk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.32-32
    • /
    • 2003
  • In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly plays a central role in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP2 (vesicle-associated membrane protein 2) engages with two plasma membrane SNAREs syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa) to form the core complex that bridges two membranes. While various factors regulate SNARE assembly, the membrane also plays the regulatory role by trapping VAMP2 in the membrane. The fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial Trp residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation.

  • PDF

신장근위곡세뇨관 소포를 이용한 신장독성 실험모델 개발 2.Uranyl acetate가 신장근위곡세뇨관 소포에서의 물질이동에 미치는 영향

  • 이영재;이창업;류판동;박종명;박근식
    • Toxicological Research
    • /
    • v.8 no.1
    • /
    • pp.95-107
    • /
    • 1992
  • Basolateral and brush border membrance (BLM and BBM) vesicles of renal proximal tubules were prepared from adult male New Zealand White rabbits to develop an experimental for assessment of nephrotoxicity. PAH uptakes using BLMV, and glucose and leucine uptakes using BBMV were measured in the rabbits treated uranyl acetate. In addition, urinalysis and histopathological studies were performed to investigate the correlationship with the membrance vesicle uptakes.

  • PDF

Syndecan-4 cytoplasmic domain could disturb the multilamellar vesicle

  • Kim, Suhk-Mann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Syndecan-4 cytoplasmic domain was tested to confirm the interactions with the bilayer membrane using $^{31}P$ solid-state NMR measurements. Syndecan-4 was known as a coreceptor with integrins in the cell adhesion. The syndecan-4 V region is not understood of its functional roles and tested its ability of the interaction with multilamellar vesicles. The $^{31}P$ powder pattern was dramatically changed and showed isotropic peak which imply the bilayer membrane changed its topology to the micelle-like structure. Especially, phosphatidylcholine membrane was affected this effect more than phosphatidylethanolamine membrane.

Porosome: the Universal Molecular Machinery for Cell Secretion

  • Jena, Bhanu P.
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.517-529
    • /
    • 2008
  • Porosomes are supramolecular, lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. The mouth of the porosome opening to the outside, range in size from 150 nm in diameter in acinar cells of the exocrine pancreas, to 12 nm in neurons, which dilates during cell secretion, returning to its resting size following completion of the process. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. In this mini review, the discovery of the porosome, its structure, function, isolation, chemistry, and reconstitution into lipid membrane, the molecular mechanism of secretory vesicle swelling and fusion at the base of porosomes, and how this new information provides a paradigm shift in our understanding of cell secretion, is discussed.

Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A (Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과)

  • 남기열
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 1992
  • Protein phosphatase 2A was obtained from a cytosolic fraction of bovine brain homogenate. The phosphatase activity using phosphorylated histone Hl as substrate was suppressed in the presence of liposomes composed of dipalmitoylphosphatidylcholine(DPPC) or the mixture of phosphatidylserine and DPPC. The binding of protein phosphatase to liposome was indicated by the facts that the phosphatase activity of the supernatant of protein phosphatase/multilayer vesicle mixture was decreased with increasing amount of liposome, and that [$^{125}I$]-labeled protein phosphatase was coeluted with liposome. However, the affinity of the protein for phospholipid membrane was not so high. On the other hand, okadaic acid and liposome reduced the phosphatase activity synergistically, which means that okadaic acid binds neither to lipid membrane nor to the membrane-associated phosphatase, The inhibitory effect of liposome was, therefore, ascribed to association of the protein phosphatase 2A with the lipid bilayer membrane.

  • PDF

Effect of Unsaturation on the Stability of C18 Polyunsaturated Fatty Acids Vesicles Suspension in Aqueous Solution

  • Teo, Yin Yin;Misran, Misni;Low, Kah Hin;Zain, Sharifuddin Md.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • Degree of unsaturation in fatty acid molecules plays an important role in the formation of vesicles. Vesicle formation from C18 fatty acids with different amount of double bonds such as oleic acid, linoleic acid and linolenic acid with the incorporation of 1,2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-PEG2000) have been examined by TEM. Critical vesicular concentrations (CVC) of the vesicle suspension are determined by turbidity and surface tension methods. The CVC of fatty acids increases when the amount of unsaturation in the alkyl chain increases. On the other hand, stability of vesicle suspension has been examined by using particle size and zeta potential at $30^{\circ}C$. There was a dramatic decrease in particle size measurement from mono-unsaturation to tri-unsaturation which could be due to the effect of fluidity in the membrane bilayer caused by different degree of unsaturation. The values of zeta potential for vesicles that were formed without the incorporation of DPPE-PEG2000 were in the range of -70 mV to -100 mV. It has been observed that the incorporation of DPPEPEG2000 to the vesicle reduces the magnitude of zeta potential. However, this phenomenon does not obviously seen in fatty acid vesicles formed by linoleate-linoleic acid and linolenate-linolenic acid. We therefore conclude that the addition of DPPE-PEG2000 does not effectively improve the stability of the linoleate-linoleic acid and linolenatelinolenic acid vesicle at pH 9.0 after the evaluation of their particle size and zeta potential over a period of 30 days. Although the vesicles formed were not stable for more than 10 days, they have displayed the potential in encapsulating the active ingredients such as vitamin E and calcein. The results show that the loading efficiencies of vitamin E are of encouraging value.