Browse > Article
http://dx.doi.org/10.12925/jkocs.2015.32.1.165

A Study on Mobility Gradients and Phase Transitions in N-propyl-N,N-dimethylethanolamine Reaction  

Kim, Ki-Jun (Dept. of Chemical Engineering, DaeJin University)
Sung, Wan-Mo (Dept. of Chemical Engineering, DaeJin University)
Lee, Joo-Youb (Dept. of Disaster Management and Safety Engineering, Junwon University)
Publication Information
Journal of the Korean Applied Science and Technology / v.32, no.1, 2015 , pp. 165-169 More about this Journal
Abstract
N-propyl-N,N-dimethylethanolamine was directly ultrasonicated in acidic water for 6 minute to give clear stock solutions. The catalytic hydrolysis of N-propyl-N,N-dimethylethanolamine was studied at $30{\sim}55^{\circ}C$ in the presence of uni-lamellar vesicle and mixture of uni- and multi-lamellar aggregates. The difference of rate between uni- and mixture was observed, where uni-lamellar reaction was more catalytic effect. The phase transition temperature of vesicle was $37{\sim}44^{\circ}C$. The particle size of multi-lamellar than that of uni-lamellar of biological membrane was measured more largely.
Keywords
N-propyl-N,N-dimethylethanolamine; phase transition; hydrolysis; particle size;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. A. Dennis, J. Cao, Y. H. Hsu, V. Magrioti, G. Kokotos, Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention, Chem. Rev. 111, 6131, (2011).
2 D. L. Scott, S. P. White, Z. Otwinowski, W. Yuan, M. H. Gelb, P. B. Sigler, Interfacial catalysis - the mechanism of phospholipase A2, Science 250, 1541, (1990).   DOI
3 K. Wagner, G. Brezesinski, Phospholipases to recognize modelmembrane structures on a molecular length scale, Curr. Opin. Colloid Interface Sci. 13 47, (2008).   DOI
4 J. E. Burke, E. A. Dennis, Phospholipase A2 structure/function, mechanism, and signaling, J. Lipid Res. 50, S237, (2009).   DOI
5 O. G. Mouritsen, T. L. Andresen, A. Halperin, P. L. Hansen, A. F. Jakobsen, U.B. Jensen, M. O. Jensen, K. Jorgensen, T. Kaasgaard, C. Leidy, A. C. Simonsen, G. H. Peters, M. Weiss, Activation of interfacial enzymes at membrane surfaces, J. Phys. Condens. Matter 18, S1293, (2006).   DOI
6 M. H. Gelb, M. K. Jain, A. M. Hanel, O. G. Berg, Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2, Annu. Rev. Biochem. 64, 653, (1995).   DOI
7 O. Berg, M. Gelb, M.-D. Tsai, M. K. Jain, Interfacial enzymology: the secreted phospholipase paradigm, Chem. Rev. 101 2613, (2001).   DOI
8 O. Berg, B. Z. Yu, J. Rogers, M. K. Jain, Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants, Biochemistry 30, 7283, (1991).   DOI
9 W. R. Burack, Q. Yuan, R. L. Biltonen, Role of lateral phase separation in the modulation of phospholipase A2 activity, Biochemistry 32, 583, (1993).   DOI
10 U. Dahmen-Levison, G. Brezesinski, H. Mohwald, Specific adsorption of PLA2 at monolayers, Thin Solid Films 327(5), 616, (1998).
11 D. W. Grainger, A. Reichert, H. Ringsdorf, C. Salesse, An enzyme caught in action: direct imaging of hydrolytic function and domain formation of phospholipase A2 in phosphatidylcholine monolayers, FEBS Lett. 252, 73, (1989).   DOI
12 G. Batist, K. A. Gelmon, K. N. Chi, W. H. Miller, S. K. L. Chia, L. D. Mayer, C. E. Swenson, Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors, Clin. Cancer Res. 15 , 692, (2009).   DOI
13 A. Chonn, S. C. Semple, P. R. Cullis, Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes, J. Biol. Chem. 267, 18759, (1992).
14 H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv. Enzyme Regul. 41, 189, (2001).   DOI
15 A. A. Gabizon, Liposomal drug carrier systems in cancer chemotherapy: current status and future prospects, J. Drug Target. 10, 535, (2002).   DOI