DOI QR코드

DOI QR Code

A Study on Mobility Gradients and Phase Transitions in N-propyl-N,N-dimethylethanolamine Reaction

N-propyl-N,N-dimethylethanolamine 반응에서 유동성 변화와 상전이에 관한 연구

  • Kim, Ki-Jun (Dept. of Chemical Engineering, DaeJin University) ;
  • Sung, Wan-Mo (Dept. of Chemical Engineering, DaeJin University) ;
  • Lee, Joo-Youb (Dept. of Disaster Management and Safety Engineering, Junwon University)
  • Received : 2015.02.17
  • Accepted : 2015.03.25
  • Published : 2015.03.30

Abstract

N-propyl-N,N-dimethylethanolamine was directly ultrasonicated in acidic water for 6 minute to give clear stock solutions. The catalytic hydrolysis of N-propyl-N,N-dimethylethanolamine was studied at $30{\sim}55^{\circ}C$ in the presence of uni-lamellar vesicle and mixture of uni- and multi-lamellar aggregates. The difference of rate between uni- and mixture was observed, where uni-lamellar reaction was more catalytic effect. The phase transition temperature of vesicle was $37{\sim}44^{\circ}C$. The particle size of multi-lamellar than that of uni-lamellar of biological membrane was measured more largely.

N-propyl-N,N-dimethylethanolamine의 용액을 만들기 위해 산성 조건 하에서 6분간 초음파처리하여 제조하였다. N-propyl-N,N-dimethylethanolamine 의 촉매 가수분해는 온도 $30{\sim}55^{\circ}C$에서 uni-lamellar vesicle과 uni-lamellar와 multi-lamellar가 뭉쳐진 혼합물에서 연구되었다. 이들의 차이는 촉매효과에 대해 multi-lamellar보다 uni-lamellar에서 영향이 크게 나타났다. Vesicle의 상전이 온도는 $37{\sim}44^{\circ}C$이며, multi-lamellar의 분자 입자의 크기는 uni-lamellar의 입자의 크기보다 크게 나타 났다.

Keywords

References

  1. E. A. Dennis, J. Cao, Y. H. Hsu, V. Magrioti, G. Kokotos, Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention, Chem. Rev. 111, 6131, (2011).
  2. D. L. Scott, S. P. White, Z. Otwinowski, W. Yuan, M. H. Gelb, P. B. Sigler, Interfacial catalysis - the mechanism of phospholipase A2, Science 250, 1541, (1990). https://doi.org/10.1126/science.2274785
  3. K. Wagner, G. Brezesinski, Phospholipases to recognize modelmembrane structures on a molecular length scale, Curr. Opin. Colloid Interface Sci. 13 47, (2008). https://doi.org/10.1016/j.cocis.2007.08.009
  4. J. E. Burke, E. A. Dennis, Phospholipase A2 structure/function, mechanism, and signaling, J. Lipid Res. 50, S237, (2009). https://doi.org/10.1194/jlr.R800033-JLR200
  5. O. G. Mouritsen, T. L. Andresen, A. Halperin, P. L. Hansen, A. F. Jakobsen, U.B. Jensen, M. O. Jensen, K. Jorgensen, T. Kaasgaard, C. Leidy, A. C. Simonsen, G. H. Peters, M. Weiss, Activation of interfacial enzymes at membrane surfaces, J. Phys. Condens. Matter 18, S1293, (2006). https://doi.org/10.1088/0953-8984/18/28/S12
  6. M. H. Gelb, M. K. Jain, A. M. Hanel, O. G. Berg, Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2, Annu. Rev. Biochem. 64, 653, (1995). https://doi.org/10.1146/annurev.bi.64.070195.003253
  7. O. Berg, M. Gelb, M.-D. Tsai, M. K. Jain, Interfacial enzymology: the secreted phospholipase paradigm, Chem. Rev. 101 2613, (2001). https://doi.org/10.1021/cr990139w
  8. O. Berg, B. Z. Yu, J. Rogers, M. K. Jain, Interfacial catalysis by phospholipase A2: determination of the interfacial kinetic rate constants, Biochemistry 30, 7283, (1991). https://doi.org/10.1021/bi00243a034
  9. W. R. Burack, Q. Yuan, R. L. Biltonen, Role of lateral phase separation in the modulation of phospholipase A2 activity, Biochemistry 32, 583, (1993). https://doi.org/10.1021/bi00053a025
  10. U. Dahmen-Levison, G. Brezesinski, H. Mohwald, Specific adsorption of PLA2 at monolayers, Thin Solid Films 327(5), 616, (1998).
  11. D. W. Grainger, A. Reichert, H. Ringsdorf, C. Salesse, An enzyme caught in action: direct imaging of hydrolytic function and domain formation of phospholipase A2 in phosphatidylcholine monolayers, FEBS Lett. 252, 73, (1989). https://doi.org/10.1016/0014-5793(89)80892-0
  12. A. Chonn, S. C. Semple, P. R. Cullis, Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes, J. Biol. Chem. 267, 18759, (1992).
  13. H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv. Enzyme Regul. 41, 189, (2001). https://doi.org/10.1016/S0065-2571(00)00013-3
  14. A. A. Gabizon, Liposomal drug carrier systems in cancer chemotherapy: current status and future prospects, J. Drug Target. 10, 535, (2002). https://doi.org/10.1080/1061186021000043061
  15. G. Batist, K. A. Gelmon, K. N. Chi, W. H. Miller, S. K. L. Chia, L. D. Mayer, C. E. Swenson, Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors, Clin. Cancer Res. 15 , 692, (2009). https://doi.org/10.1158/1078-0432.CCR-08-0515