• Title/Summary/Keyword: Membrane inlet

Search Result 119, Processing Time 0.025 seconds

Development of a High Efficiency Polymer Electrolyte Membrane Fuel Cell Stack under Pressurized Operating Conditions (고효율 가압형 고분자전해질 연료전지 셀스택 개발)

  • Han, In-Su;Seo, Hakyu;Jung, Jeehoon;Kim, Minsung;Shin, Hyunkhil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.1-125.1
    • /
    • 2010
  • A high efficiency polymer electrolyte membrane (PEM) fuel cell stack was developed for pressurized pure hydrogen and oxygen supplying conditions. The design objective for the cell stack was to maximize the electric efficiency and to minimize exhaust-gas emissions from it simultaneously. To achieve this objective, the cell stack was designed to use pure hydrogen and oxygen as fuel and oxidant, respectively, and to be operated under high gas inlet pressures and in a stage-wise dead-end operation mode. Major components constituting the cell stack, such as membrane electrode assembly, bipolar-plate, and gasket, have been developed to meet a target durability even in severe operating conditions: high gas inlet pressures and usage of pure oxygen. A high-power fuel cell stack was assembled using these components to verify the performance. The cell stack showed a good performance in terms of the efficiency and maximum power output.

  • PDF

Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics

  • Choi, Changkyoo;Lee, Chulmin;Park, No-Suk;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • This study analyzes the velocity and pressure incurred by protruding shapes installed within the inlet part of a pressurized membrane module during operation to determine the fluid flow distribution. In this paper, to find the flow distribution within a module, it investigates the velocity and pressure values at cross-sectional and outlet planes, and 9 sections classified on outlet plane using computational fluid dynamics. From the Reynolds number (Re), the fluid flow was estimated to be turbulent when the Re exceeded 4,000. In the vertical cross-sectional plane, shape 4 and 6 (round-type protrusion) showed the relatively high velocity of 0.535 m/s and 0.558 m/s, respectively, indicating a uniform flow distribution. From the velocity and pressure at the outlet, shape 4 also displayed a relatively uniform fluid velocity and pressure, indicating that fluid from the inlet rapidly and uniformly reached the outlet, however, from detailed data of velocity, pressure and flowrate obtained from 9 sections at the outlet, shape 6 revealed the low standard deviations for each section. Therefore, shape 6 was deemed to induce the ideal flow, since it maintained a uniform pressure, velocity and flowrate distribution.

Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction (연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구)

  • Yun, Sungho;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.503-511
    • /
    • 2013
  • The humidifying supply gas is important in terms of the performance efficiency and membrane life improvement of a PEM fuel cell. A planar membrane humidifier is classified as a cross-flow and counter-flow type depending on the flow direction, and heat and mass transfer occur between the plate and the membrane. In this study, the changes in heat and mass transfer for various inlet temperatures and flow rates are compared according to the flow direction by using the sensible and latent ${\varepsilon}$-NTU method. The obtained results indicate that the counter flow shows higher heat and mass transfer performance than the cross flow at a low flow rate, and the difference in performance decreases as the flow rate increases. Furthermore, changes in the mass transfer performance decrease considerably with a nonlinear increase in the inlet temperature, and variations of the heat transfer performance are small.

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF

Dissolved Methane Measurements in Seawater and Sediment Porewater Using Membrane Inlet Mass Spectrometer (MIMS) System (Membrane Inlet Mass Spectrometer (MIMS) 시스템을 이용한 해수 및 퇴적물 공극수내 용존 메탄의 측정)

  • An, Soon-Mo;Kwon, Ji-Nam;Lim, Jea-Hyun;Park, Yun-Jung;Kang, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.244-250
    • /
    • 2007
  • Membrane inlet mass spectrometer (MIMS) has been used to accurately quantify dissolved gases in liquid samples. In this study, the MIMS system was applied to measure dissolved methane in seawater and sediment porewater. To evaluate the accuracy of the measurement, liquid samples saturated with different methane partial pressure were prepared and the methane concentrations were quantified with the MIMS system. The measured values correspond well with the expected values calculated from solubility constants. The standard error of the measurements were $0.13{\sim}0.9%$ of the mean values. The distribution of dissolved methane concentration in seawater of the South Sea of Korea revealed that the physical parameters primarily control the methane concentration in sea water. The MIMS system was effective to resolve the small dissolved methane difference among water masses. The probe type inlet in MIMS system was proven to be effective to measure porewater methane concentration.

Evaluation of the Flux According to Membrane Distillation Module Structure and Operating Conditions Using PVDF Hollow Fiber Membrane (PVDF 중공사 분리막을 이용한 MD 모듈 구조 및 운전 조건에 따른 플럭스 영향 평가)

  • Min, Ji Hee;Lee, Seul ki;Gil, Nam Seok;Park, Min Soo;Kim, Jin Ho
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • Hydrophobic porous PVDF hollow fiber membranes for Membrane Distillation (MD) were fabricated by a combination of thermally induced phase separation (TIPS) and stretching. The purpose of this study is to investigate the shape and operating conditions of the module and the effect of piping size on parallel connection. In the optimization experiment of the vacuum membrane distillation module, the flux decreased as the packing density and length of the membrane in the module increased. When the module was connected vertically, it was confirmed that the nearest to the inlet of the vacuum port was the highest flux. In selecting the size of the header pipe of the module, it was confirmed that the maximum flux is shown when the inner diameter area of the hollow fiber membrane and the inner diameter area of the header pipe are the same. Also, it is necessary to find the optimal linear velocity because the higher the linear velocity in the module, the higher the flux, but the pressure acting on the module also increases proportionally.

A pilot study of high flux membrane process for responding to influent turbidity changes in reservoir water (호소수 탁도변화 대응을 위한 고플럭스 막여과공정의 Pilot 연구)

  • Kang, Joonseok;Seong, Jayeong;Yoo, Jewan;Kim, Hyungsoo;Lee, Jaekyu;Jeon, Minhyuk;Cheon, Jihoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.393-402
    • /
    • 2020
  • In the membrane process, it is important to improve water treatment efficiency to ensure water quality and minimize membrane fouling. In this study, a pilot study of membrane process using reservoir water was conducted for a long time to secure high flux operation technology capable of responding to influent turbidity changes. The raw water and DAF(Dissolved Air Flotation) treated water were used for influent water of membrane to analyze the effect of water quality on the TMP (Trans Membrane Pressure) and to optimize the membrane operation. When the membrane flux were operated at 70 LMH and 80 LMH under stable water quality conditions with an inlet turbidity of 10 NTU or less, the TMP increase rates were 0.28 and 0.24 kPa/d, respectively, with minor difference. When the membrane with high flux of 80 LMH was operated for a long time under inlet turbidity of 10 NTU or more, the TMP increase rate showed the maximum of 43.5 kPa/d. However, when the CEB(Chemically Enhanced Backwash) cycle was changed from 7 to 1 day, it was confirmed that the TMP increase rate was stable to 0.23 kPa/d. As a result of applying pre-treatment process(DAF) on unstability water quality conditions, it was confirmed that the TMP rise rates differed by 0.17 and 0.64 kPa/d according to the optimization of the coagulant injection. When combined with coagulation pretreatment, it was thought that the balance with the membrane process was more important than the emphasis on efficiency of the pretreatment process. It was considered that stable TMP can be maintained by optimizing the cleaning conditions when the stable or unstable water quality even in the high flux operation on membrane process.

Pore Condensation-Based Separation of VOCs by a Microporous Ceramic Membrane (미세다공성 세라믹 막에서의 가공응축기구에 의한 휘발성 유기화합물의 분리)

  • Cha, Jun-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.19-28
    • /
    • 1996
  • A pore concensation-based separation technique was studied experimentally using toluene and xylene in a nitrogen stream. The removal rate of toluene and xylene on a microporous ceramic membrane was enhanced by increasing the partial pressure difference across the membrane, but the selectivity was reduced with increasing flux of nitrogen. This was found both in vacuum and pressure modes of operation. The experimental results from this study suggest that the pores mear the inlet portion of the module were filled with the organic solvent while the pores near the exit section of the module were slightly opened as the solvent concentration was depleted along the module. In the case of xylene, the rate of N$_{2}$ permeation was reduced considerably relative to toluene, resulting in a much higher separation gactor. Condensibility of xylene appeared to be higher than that of toluene, the potential for pore condensation-based separation of xylene was also found to be higher than that for toluene.

  • PDF

Water Purification Using Hollow Fiber Microfiltration Membrane (막분리(膜分離)를 이용(利用)한 수도원수(水道原水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Cho, Bong Yeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 1993
  • Constant rate permeat experiments using polyethylene hollow fiber membranes were conducted in order to treat dam water for potable purposes. The experiments consisted of two series. One series consisted of six bench scale apparatuses, each having a $0.4m^2$ nominal permeat area, which were applied in determining the optimum operating conditions. The other series was comprised of two pilot scale plant, each having a $40m^2$ nominal permeat area. Both series were operated for six months. Coagulant was not used in any of the experiments. To suppress an increase in differential pressure between the inlet and outlet of the membrane, a hydrophilic membrane was found to be better than a hydrophobic membrane. Also, permeat flux should not be more than 0.03m/h, and air bubbling-washing for 1 minute should be conducted at 180 minutes intervals or less.

  • PDF

A Study on Hydraulic Modifications of Low-Pressure Membrane Inlet Structure with CFD and PIV Techniques (CFD와 PIV 기법을 이용한 저압막 유입부 수리구조 개선에 관한 연구)

  • Oh, Jeong Ik;Choi, Jong-Woong;Lim, Jae-Lim;Kim, Donggil;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.607-618
    • /
    • 2015
  • This study was conducted to suggest hydraulic modification for improving evenness of inlet flow distribution into side stream type low-pressure MF (microfiltration) module using CFD (computational fluid dynamics) simulation and PIV (particle image velocimetry) techniques. From the results of CFD simulation for various typed inlet structure, it was investigated that installing internal orifice baffle in inlet the distribution channel could improve the evenness of inlet flow distribution over about 40%. Also, from the results of PIV measurements which were carried out for verifying the CFD simulation, it was observed that the momentum of the water body coming from the opposite side of the inlet was relatively larger. This momentum would generate strong shear force in the near of inlet side wall. On the other hands, occurrence of dead zone and eddy flow was confirmed in the opposite side.