DOI QR코드

DOI QR Code

Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction

연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구

  • Received : 2012.12.05
  • Accepted : 2013.02.19
  • Published : 2013.05.01

Abstract

The humidifying supply gas is important in terms of the performance efficiency and membrane life improvement of a PEM fuel cell. A planar membrane humidifier is classified as a cross-flow and counter-flow type depending on the flow direction, and heat and mass transfer occur between the plate and the membrane. In this study, the changes in heat and mass transfer for various inlet temperatures and flow rates are compared according to the flow direction by using the sensible and latent ${\varepsilon}$-NTU method. The obtained results indicate that the counter flow shows higher heat and mass transfer performance than the cross flow at a low flow rate, and the difference in performance decreases as the flow rate increases. Furthermore, changes in the mass transfer performance decrease considerably with a nonlinear increase in the inlet temperature, and variations of the heat transfer performance are small.

연료전지 시스템에서 공급기체 가습은 연료전지 성능효율과 전해질막 수명 향상 측면에서 중요하다. 판형 막 가습기는 일반적으로 유동 방향에 따라 직교류와 대향류로 구분되고 판과 막 사이에서 고온 다습한 공기와 저온 건조한 공기의 열 및 물질전달이 이루어진다. 본 연구에서는 현열 및 잠열 ${\varepsilon}$-NTU 법을 이용하여 입구 온도와 유량 변화에 따른 열 및 물질전달 성능 변화를 유동 방향에 따라 비교하였다. 이를 통하여 저유량 일 때 대향류는 직교류 보다 열 및 물질전달 성능이 높은 것을 알 수 있었고 유량이 증가함에 따라 성능 차이가 감소되는 것을 확인할 수 있었다. 그리고 입구온도가 증가함에 따라 열전달 성능 변화는 작은 반면 물질전달 성능 변화는 비선형으로 크게 감소되는 결과를 얻었다.

Keywords

References

  1. Larminie, J. and Dicks, A., 2000, Fuel Cell System Explained, John Wiley & Sons, Ltd., Toronto.
  2. Zhang, L., Pan, M. and Quan, S., 2008, "Model Predictive Control of Water Management in PEMFC," J. of Power Source, Vol. 180, pp. 322-329. https://doi.org/10.1016/j.jpowsour.2008.01.088
  3. Chen, D. and Peng, H., 2005, "A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control," Trans. of the ASME, Vol. 127, pp. 424-432. https://doi.org/10.1115/1.1862676
  4. Chu, D., Jiang, R. and Walker, C., 1999, "Performance of Polymer Electrolyte Membrane Fuel Cell(PEMFC) Stacks Part 1. Evaluation and Simulation of an Air-Breathing PEMFC Stack," J. of Power Sources, Vol. 83, pp. 128-133. https://doi.org/10.1016/S0378-7753(99)00285-2
  5. Cave, P. and Merida, W., 2008, "Water Flux in Membrane Fuel Cell Humidifiers: Flow Rate and Channel Location Effects," J. of Power Sources, Vol. 175, pp. 408-418. https://doi.org/10.1016/j.jpowsour.2007.08.103
  6. Park, S. K., Choe, S. Y. and Choi, S. H., 2008, "Dynamic Modeling and Analysis of a Shell-andtube Type Gas-to-gas Membrane Humidifier for PEM Fuel Cell Application," Int. J. of Hydrogen Energy, Vol. 33, pp. 2273-2282. https://doi.org/10.1016/j.ijhydene.2008.02.058
  7. Yu, S., Lee, Y., Bae, H., Hwang, J. Y. and Ahn, K., 2009, "Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model," Trans. Korean Soc. Mech. Eng. B, Vol. 33, pp. 596-603. https://doi.org/10.3795/KSME-B.2009.33.8.596
  8. Hwang, J. Y., Chang, H., Kang, K. and Kang, H., 2011, "Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier," Trans. Korean Soc. Mech. Eng. B, Vol. 35, pp. 361-369. https://doi.org/10.3795/KSME-B.2011.35.4.361
  9. Bae, H., Ahn, K. Y., Lee, Y. D., Kang, S. K. and Yu, S., 2011, "Basic Analysis of Heat and Mass Transfer Characteristics of Tubular Membrane Humidifier for Proton Exchange Membrane Fuel Cell," Trans. Korean Soc. Mech. Eng. B, Vol. 35, pp. 473-480. https://doi.org/10.3795/KSME-B.2011.35.5.473
  10. Byun, S. Y., Kim, B. J. and Kim, M. S., 2011, "Study on PEM-Fuel-Cell Humidification System Consisting of Membrane Humidifier and Exhaust Air Recirculation Units," Trans. Korean Soc. Mech. Eng. B, Vol. 35, pp. 337-344. https://doi.org/10.3795/KSME-B.2011.35.4.337
  11. Hwang, J. J., Chang, W, R., Kao, J. K. and Wu, W., 2012, "Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack," J. of Power Sources, Vol. 215, pp. 69-76. https://doi.org/10.1016/j.jpowsour.2012.04.051
  12. Yu, S., Im, S., Kim, S., Hwang, J., Lee, Y., Kang, S. and Ahn, K., 2011, "A Parametric Study of the Performance of a Planar Membrane Humidifier with a Heat and Mass Exchanger Model for Design Optimization," Int. J. Heat and Mass Transfer, Vol. 54, pp. 1344-1351. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.054
  13. Kadylak, D., Cave, P. and Merida, W., 2009, "Effectiveness Correlations for Heat and Mass Transfer in Membrane Humidifiers," Int. J. Heat and Mass Transfer, Vol. 52, pp. 1504-1509. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.002
  14. Kadylak, D. and Merida, W., 2010, "Experimental Verification of a Membrane Humidifier Model Based on the Effectiveness Method," J. Power Sources, Vol. 195, pp. 3166-3175. https://doi.org/10.1016/j.jpowsour.2009.12.005
  15. Incropera, F. P., Dwitt, D. P., Bergman, T. L. and Lavine, A. S., Introduction to Heat Transfer, WILEY, 2009.
  16. Zhang, L. Z. and Niu, J, L., 2002, "Effectiveness Correlations for Heat and Moisture Transfer Processes in an Enthalpy Exchanger With Membrane Cores," Trans. of the ASME, Vol. 124, pp. 922-929. https://doi.org/10.1115/1.1469524
  17. Namvar, R., Pyra, D., Gaomin, G., Simson, C, J. and Besant, R. W., 2012, "+Transient Characteristics of a Liquid-to-air Membrane Energy Exchanger (LAMEE) Experimental Data with Correlations," Int. J. Heat and Mass Transfer, Vol. 55, pp. 6682-6694. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.077
  18. Niu, J. L. and Zhang, L. Z., 2001, "Membrane- Based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance," J. Membrane Science, Vol. 189, pp. 179-191. https://doi.org/10.1016/S0376-7388(00)00680-3
  19. Simonson, C. J. and Besant, R. W., 1999, "Energy Wheel Effectiveness. Part I. Development of Dimensionless Groups," Int. J. Heat and Mass Transfer, Vol. 42, pp. 2161-2170. https://doi.org/10.1016/S0017-9310(98)00325-1
  20. Flatau, P. J., Walko, R. L. and Cotton, W, R., 1992, "Polynomial Fits to Saturation Vapor Pressure," American Meteorological Society, pp. 1507-1513. https://doi.org/10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2