• 제목/요약/키워드: Membrane filtration

검색결과 649건 처리시간 0.023초

전기응집 조건이 활성슬러지 막 여과 저항에 미치는 영향 (Effect of operating condition of electro-coagulation on the membrane filtration resistances of activated sludge)

  • 홍성준;장인성
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.2314-2320
    • /
    • 2015
  • MBR (Membrane Bio-Reactor) 공정은 막 오염을 해결하기 위해 막대한 에너지 소비를 하는 공정으로 알려져 있다. 이를 해결하기 위한 일환으로 전기응집 기술을 MBR에 적용하는 시도가 보고되고 있다. 본 연구에서는 전류밀도를 변화시켜가며 활성슬러지의 막 여과를 수행하여 전기응집이 막 오염 저감에 미치는 영향과 메커니즘을 파악하고자 하였다. 활성슬러지 혼합액을 전기응집한 후 회분식교반셀로 분리 막의 여과성능을 평가하였다. 전류밀도(A/m2)를 10에서 40으로 증가시켰을 때 총 오염 저항 (Rc+Rf) 값이 18%에서 79%까지 감소하여 전기응집으로 인해 분리 막의 여과성능이 향상됨을 확인할 수 있었다. 전기응집 전후로 유기물 농도와 활성슬러지 입도분포 변화는 거의 일어나지 않았다. 여과 성능의 향상은 수산화알루미늄, Al(OH)3이 생성되어 막 표면에 부착되면서 오염물질이 쌓이게 됨을 방지하는 역할, 즉 dynamic membrane 으로 작용하였기 때문인 것으로 판단되었다.

세라믹 막여과 정수처리 공정에서 유입수질 및 막여과유속이 막오염 형성에 미치는 영향 (Effects of membrane fouling formation by feed water quality and membrane flux in water treatment process using ceramic membrane)

  • 강준석;박서경;이정준;김한승
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.77-87
    • /
    • 2018
  • In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than $5m^3/m^2{\cdot}day$. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.

Purification During Crossflow Electromicrofiltration of Fermentation Broth

  • Park Young G.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권6호
    • /
    • pp.500-505
    • /
    • 2004
  • The present study was to investigate the purification of a fermentation broth by an electromicrofiltration membrane. Microfiltration runs with a crude and a centrifuged broth, with solution of particles recovered from centrifugation and with permeates from microfiltration experiments were thus compared. Microfiltration performances were governed by colloids and small particles that induced sharp initial flux declines. For these results, the evolution of the overall membrane resistance was increased by $80\%$ in comparison with the electromicrofiltration membrane. The main focus of this study was set on the enhancement of the filtrate flux by an electric field. This pressure electrofiltration leads to a drastic improvement of the filtration by $100\%$ and the filtration time was thereby reduced. Pressure electrofiltration serves as an inter­esting alternative to the cross-flow filtration and it effectively separates advantageous constitu­ents such as amino acids and biopolymers from a fermentation broth. They were equally main­tained during the microelectrofiltration, although they were significantly reduced by $45\%$ by the microfiltration without the application of an electric field. Accordingly, since the electrofiltration membrane was provided more permeability, this study experimentally demonstrates that the permeability inside a membrane can be controlled using an electric field.

좁쌀약주의 여과공정 개선에 관한 연구 (Improvment on the filtration process of foxtail millet Yakju)

  • 강영주;고정삼
    • 한국식품저장유통학회지
    • /
    • 제10권4호
    • /
    • pp.482-487
    • /
    • 2003
  • 제주 지역의 대표적인 좁쌀 약주 제품에 대하여 유통 과정 중에 발생하는 침전 형성을 방지하기 위하여 여과 공정에 관한 연구를 실시하고 개선 방안을 제시하였다. 여러 공극 크기의 유리 막 여과지와 중공 사막 카트리지여과 매질을 가지고 좁쌀 약주를 여과한 결과, 대부분이 침전 형성 가능한 입자들은 1.2$\mu\textrm{m}$ 공극 크기의 여과 매질에 의한 여과로 제거 되는 것으로 조사되었다. 0.45$\mu\textrm{m}$ 중공 사막 카트리지인 경우 여과 flux는 342.8 lmh로 계산되었다. 여과에 따른 성분 변화는 크지 않은 것으로 조사되었다 그리고 4$^{\circ}C$와 실온을 48시간 씩 반복하면서 3개월간 저장 중 0.7$\mu\textrm{m}$ 공극 크기의 유리 막 여과지에 의한 여과에서도 미세한 침전 형성이 관찰되었다. 그러나 중공 사막인 경우에는 0.45$\mu\textrm{m}$에서도 침전 형성이 관찰되지 않았다. 따라서 완벽한 침전 형성 방지를 위해서는 현재 최종 여과 공정인 1 $\mu\textrm{m}$ 정밀 원통 여과지 공정 다음에 0.45$\mu\textrm{m}$ 중공 사막 여과 시스템도입이 효과적이다.

금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감 (Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation)

  • 김종오;정종태
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.66-74
    • /
    • 2004
  • 합성 하수 및 실제 하수를 이용한 금속 막의 정밀 여과 공정에서 분리 막의 전체 저항의 증가는 입자의 막 표면 축적에 의한 케이크 층의 저항 ($R_c$)에 가장 큰 영향을 받았다. 막 오염 저감을 위한 방법으로 오존 가스를 이용한 간헐적 역세정은 공기에 의한 경우보다 막 오염 저감에 훨씬 더 효과적인 것으로 나타났다. 운전 인자에 대한 영향으로 동일한 오존 주입량에서는 주입시간을 길게 하기보다는 주입 가스 유량을 크게 할수록 더 높은 막 투과 유속의 회복을 보였다. 여과시간이 길수록 오존가스를 이용한 막 오염 저감효과가 감소하는 것으로 나타나 부착층 및 막 내부에서 파울링 물질에 의한 비가역적인 막 오염이 발생하기 전에 막 세정을 실시하는 것이 바람직한 것으로 판단된다.

Characteristic of alumina-based microfiltration ceramic membrane

  • Hyunsoo, Kim;Oyunbileg, Purev;Eunji, Myung;Kanghee, Cho;Nagchoul, Choi
    • Membrane and Water Treatment
    • /
    • 제14권1호
    • /
    • pp.11-18
    • /
    • 2023
  • This work addresses the development of microfiltration ceramic membrane from alumina using extrusion method. The membranes were sintered at different temperatures ranging between 1000 and 1300℃. The alumina was characterized with thermogravimetric analysis, particle size distribution, X-ray diffraction, Fourier transform infrared spectrometer and scanning electron microscope analysis. Subsequently, the effect of sintering temperature on the membrane properties such as porosity, flexural strength, and pure water permeability was investigated and optimized for the sintering temperature. It is observed that with increasing sintering temperature, the porosity of the membranes decreases and the flexural strength, and pure water permeability of the membranes increase. The uncoated and coated membranes were compared at constant flux mode of filtration. Under the turbidity solution recirculation alone at 100 NTU, trans-membrane pressure (TMP) of uncoated membrane remained constant when the filtration flux was below 121 Lm-2 h -1 , while the coated membrane was 111 Lm-2 h -1 . Although suction pressure increased more rapidly at higher turbidity, coated membrane filtration showed better removal efficiency of the turbidity.

막여과 정수처리공정에서 망간에 의한 막오염 특성 및 화학세정효율 평가 (Evaluation of membrane fouling characteristics due to manganese and chemical cleaning efficiency in microfiltration membrane process)

  • 강준석;박서경;송지영;정아영;이정준;김한승
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.539-549
    • /
    • 2017
  • In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of $2.13kgf/cm^2$, but it was recovered to the initial level ($0.17kgf/cm^2$) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.

Effects of Ultrasonic Waves on Filtration Performance and Fermentation in an Internal Membrane-Filtration Bioreactor

  • PARK, BYUNG GEON;WOO GI LEE;WEI ZHANG;YONG KEUN CHANG;HO NAM CHANG
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.243-248
    • /
    • 1999
  • Ultrasonic wave technology was employed to improve filtration performance and ethanol production in a bioreactor equipped with an internal ceramic-membrane filter module. The filtration performance was found to depend on the power and the pattern of ultrasonic wave irradiation. Under the optimized conditions (irradiation time: 25 see, period: 5 min, and ultrasonic power: 60 W), the flux was improved with the periodic-pause method by 200-700% compared with the control (with no irradiation), while the improvement was only 30 to 90% without the periodic-pause method. The final ethanol concentration also increased slightly. However, in a more severe condition (irradiation time: 2.5 min, period: 5 min, and ultrasonic power: 110 W), the irradiation of ultrasonic waves was observed to disturb cell integrity and viability, and thus to decrease ethanol production.

  • PDF

정수장 배출수 처리를 위한 Crossflow 관형막 여과 공정의 운전 적용에 관한 연구 (A Study about Applicability of Treatment for Water Treatment Residual Sludge Using Crossflow Tubular Membrane System)

  • 김영훈;김관엽;김지훈;이용수;이의종;엄정열;김형수;황선진
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.499-505
    • /
    • 2009
  • Many other countries have investigated the residual sludge treatment process to save the existing water resource and produce the high suspended solid concentration sludge. There are various methods for concentrating residual sludge, but the membrane system has received the most interest for its efficiency. The objective of this study was to evaluate the application of membrane filtration system for the residual sludge treatment. The experiment equipment was composed of Lab scale Crossflow tubular membrane filtration system. Generally, crossflow operation mode demands high electric cost mainly for the pump energy. So to cut off electric cost, very low Crossflow velocity was used in this experiment. Results confirmed that suspended solid concentration of residual sludge could be concentrated to 57,000mg/L in low Crossflow velocity tubular membrane system,. This concentration can be directly injected into the dehydrator. Based on the results, we know that the Crossflow tubular membrane system should be replaced conventional residual sludge treatment system.