• Title/Summary/Keyword: Membrane Wall

Search Result 364, Processing Time 0.027 seconds

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.395-404
    • /
    • 2017
  • Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.

Fundamental parameters of nanoporous filtration membranes

  • Wei Li;Xiaoxu Huang;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • The design theory for nanoporous filtration membranes needs to be established. The present study shows that the performance and technical advancement of nanoporous filtration membranes are determined by the fundamental parameter I (in the unit Watt1/2) which is formulated as a function of the shear strength of the liquid-pore wall interface, the radius of the filtration pore, the membrane thickness, and the bulk dynamic viscosity of the flowing liquid. This parameter determines the critical power loss on a single filtration pore for initiating the wall slippage, which is important for the flux of the membrane. It also relates the membrane permeability to the power cost by the filtration pore. It is shown that for biological cellular membranes its values are on the scale 1.0E-8Watt1/2, for mono-layer graphene membranes its values are on the scale 1.0E-9Watt1/2, and for nanoporous membranes made of silica, silicon nitride or silicon carbonized its values are on the scale 1.0E-5Watt1/2. The scale of the value of this parameter directly measures the level of the performance of a nanoporous filtration membrane. The carbon nanotube membrane has the similar performance with biological cellular membranes, as it also has the value of I on the scale 1.0E-8Watt1/2.

Lactobacillus plantarum 299v Surface-Bound GAPDH: A New Insight Into Enzyme Cell Walls Location

  • Saad, N.;Urdaci, M.;Vignoles, C.;Chaignepain, S.;Tallon, R.;Schmitter, J.M.;Bressollier, P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1635-1643
    • /
    • 2009
  • The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.

Proteomic profiles and ultrastructure of regenerating protoplast of Bryopsis plumosa (Chlorophyta)

  • Klochkova, Tatyana A.;Kwak, Min Seok;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.379-390
    • /
    • 2016
  • When a multinucleate cell of Bryopsis plumosa was collapsed by a physical wounding, the extruded protoplasm aggregated into numerous protoplasmic masses in sea water. A polysaccharide envelope which initially covered the protoplasmic mass was peeled off when a cell membrane developed on the surface of protoplast in 12 h after the wounding. Transmission electron microscopy showed that the protoplasmic mass began to form a continuous cell membrane at 6 h after the wounding. The newly generated cell membrane repeated collapse and rebuilding process several times until cell wall developed on the surface. Golgi bodies with numerous vesicles accumulated at the peripheral region of the rebuilding cell at 24 h after the wounding when the cell wall began to develop. Several layers of cell wall with distinctive electron density developed within 48-72 h after the wounding. Proteome profile changed dramatically at each stage of cell rebuilding process. Most proteins, which were up-regulated during the early stage of cell rebuilding disappeared or reduced significantly by 24-48 h. About 70-80% of protein spots detected at 48 h after the wounding were newly appeared ones. The expression pattern of 29 representative proteins was analyzed and the internal amino acid sequences were obtained using mass spectrometry. Our results showed that a massive shift of gene expression occurs during the cell-rebuilding process of B. plumosa.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Evaluation of the feasibility of bony window repositioning without using a barrier membrane in sinus lateral approach (상악동측방접근법시 차폐막을 사용하지 않는 골창재위치술의 유용성 평가)

  • Jeon, Seung-Hwan;Cho, Yong-Seok;Lee, Byung-Ha;Im, Tae-Yun;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.122-126
    • /
    • 2011
  • Introduction: In the lateral window approach for a maxillary sinus bone graft, there has been considerable controversy regarding the placement of a barrier membrane over the osteotomy site. In particular, when there is no damage to the Schneiderian membrane, clinicians should decide whether to use a barrier membrane or not, considering the benefits and costs. This study presents the clinical cases to demonstrate that only repositioning the detached window can lead to satisfactory bony healing of the grafted material without using a barrier membrane in the lateral approach for a maxillary sinus bone graft. Materials and Methods: Five consecutive patients were treated with the same surgical procedures. After performing the antrostomy on the lateral maxillary wall using a round carbide bur and diamond bur, the bony window was detached by a gentle levering action. After confirming no perforation of the Schneiderian membrane, the grafting procedure was carried out the detached window of the lateral maxillary wall was repositioned over the grafted material without using a barrier membrane. A gross examination was carried out at the postoperative 6 month re-entry, and the the preoperative and postoperative dental computed tomography (CT) at re-entry were compared. Results: All the procedures in the 5 patients went on to uneventful healing with no complications associated with the bone graft. Satisfactory bone regeneration without the interference of fibrous tissue on the gap between the repositioned window and lateral wall of the maxillary sinus was observed in the postoperative 6 month re-entry. The CT findings at re-entry revealed the, reconstruction of the external cortical plate including repositioned bony window. In addition, the loss of the discontinuity of the lateral maxillary wall was confirmed. Conclusion: This preliminary report showed that the detached window, which was just repositioned on the grafted material, could function as a barrier membrane in the lateral approach for a maxillary sinus bone graft. Therefore additional morphometric and histologic studies will be needed.

$CO_2$ Separation Using Surface Modified Silica Membrane (표면개질 실리카막을 이용한 $CO_2$선택투과분리)

  • 김성수;최현교;박홍채;김태옥;서봉국
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2000
  • To improve $CO_2$pemselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-$600^{\circ}C$. The silica was effectively deposited in the mesopores of a ${\gamma}$-alumina film coated on a porous $\alpha$-alumina tube by evacuating the reactants through the porous wall. In this membrane, $CO_2$interacts, to some extent, with the pore wall, and $CO_2$/$N_2$selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no $CO_2$selectivity. The silica membrane prepared from TEOS-ethanol-water-HCI solution showed that $CO_2$permeance was $2.5$\times$10^{-7}mol/s^{-1}.m^{-2}.Pa^{-1} at 30{\circ}C$ and $CO_2$/$N_2$selectivity was approximately 3. The $CO_2$permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.

  • PDF

Aucklandia lappa Causes Membrane Permeation of Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1827-1834
    • /
    • 2020
  • Candida albicans is a major fungal pathogen in humans. In our previous study, we reported that an ethanol extract from Aucklandia lappa weakens C. albicans cell wall by inhibiting synthesis or assembly of both (1,3)-β-D-glucan polymers and chitin. In the current study, we found that the extract is involved in permeabilization of C. albicans cell membranes. While uptake of ethidium bromide (EtBr) was 3.0% in control cells, it increased to 7.4% for 30 min in the presence of the A. lappa ethanol extract at its minimal inhibitory concentration (MIC), 0.78 mg/ml, compared to uptake by heat-killed cells. Besides, leakage of DNA and proteins was observed in A. lappa-treated C. albicans cells. The increased uptake of EtBr and leakage of cellular materials suggest that A. lappa ethanol extract induced functional changes in C. albicans cell membranes. Incorporation of diphenylhexatriene (DPH) into membranes in the A. lappa-treated C. albicans cells at its MIC decreased to 84.8%, after 60 min of incubation, compared with that of the controls, indicate that there was a change in membrane dynamics. Moreover, the anticandidal effect of the A. lappa ethanol extract was enhanced at a growth temperature of 40℃ compared to that at 35℃. The above data suggest that the antifungal activity of the A. lappa ethanol extract against C. albicans is associated with synergistic action of membrane permeabilization due to changes in membrane dynamics and cell wall damage caused by reduced formation of (1,3)-β-D-glucan and chitin.

A Light and Electron Microscopical Study of Compatible and Incompatible Interactions between Phytophthora capsici and Tomato (Lycopersicon esculentum) (Phytophthora capsici 균주와 토마토의 친화적, 불친화적 상호작용에 대한 광학 및 전자현미경적 연구)

  • 황재순;황병국;김우갑
    • Korean Journal Plant Pathology
    • /
    • v.10 no.2
    • /
    • pp.83-91
    • /
    • 1994
  • Stem tissues of tomato plants (cv. Kwanyang) inoculated with Phytophthora capsici were examined by light and electron microscopy to compare early cytological differences between comaptible and incompatible interactions of tomatoes with the fungus. Twenty four hours after inoculation, the compatible isolate S 197 colonized severely the epidermis, cortex, and xylem vessels of stem tissue, whereas only few fungal cells colonized the stem tissues inoculated with the incompatible isolate CBS 178.26. Fragmented plasma membrane, distorted chloroplast, degraded cell wall, remnants of host cytoplasm were early ultrastructural features of the damaged host cell observed both in the compatible and incompatible interaction, a number of vesicles were distributed in the space between fungal cell walls and plasma membrane. The degradation of host cell walls by P. capsici was more pronounced in the compatible than the incompatible interactions. The incompatible interactions of tomato cells with P. capsici were characterized by formation of host cell wall apposition in the cortical parenchyma cells, indicating that the apposition of electron-dense material from the host cell walls may function as a plant defense reaction to the fungus. The fungal cells encased by wall appositions had abnormal cytoplasm and separated plasma membranes. The haustorium which formed from the fungal hyphae did not further penetrate through the host wall apposition and cytoplasmic aggregation, especially in the incompatible reactions. In contrast, the haustorium of the compatible isolate S 197 was not encased by wall appositions.

  • PDF

Seismic performance of a 10-story RC box-type wall building structure

  • Hwang, Kyung Ran;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1193-1219
    • /
    • 2015
  • The purpose of this study is to evaluate the seismic performance of high-rise reinforced concrete (RC) box-type wall structures commonly used for most residential buildings in Korea. For this purpose, an analytical model was calibrated with the results of the earthquake simulation tests on a 1:5 scale 10-story distorted model. This calibrated model was then transformed to a true model. The performance of the true model in terms of the stiffness, strength, and damage distribution through inelastic energy dissipation was observed with reference to the earthquake simulation test results. The model showed high overstrength factors ranging from 3 to 4. The existence of slab in this box-type wall system changed the main resistance mode in the wall from bending moment to tension/compression coupled moment through membrane actions, and increased the overall resistance capacity by about 25~35%, in comparison with the common design practice of neglecting the slab's existence. The flexibility of foundation, which is also commonly neglected in the engineering design, contributes to 30~50% of the roof drift in the stiff direction containing many walls. The possibility of concrete spalling and reinforcement buckling and fracture under the maximum considered earthquake (MCE) in Korea appears to be very low when compared with the case of the 2010 Concepcion, Chile earthquake.