Browse > Article
http://dx.doi.org/10.4014/jmb.0902.0102

Lactobacillus plantarum 299v Surface-Bound GAPDH: A New Insight Into Enzyme Cell Walls Location  

Saad, N. (Laboratoire de Chimie des Substances Naturelles, EA 1069, Antenne IUT, Departement Genie Biologique)
Urdaci, M. (LMBA)
Vignoles, C. (UMR 6101 CNRS, Faculte de Medecine-U.)
Chaignepain, S. (University of Bordeaux, Institut Europeen de Chimie et Biologie (IECB))
Tallon, R. (LMBA)
Schmitter, J.M. (University of Bordeaux, Institut Europeen de Chimie et Biologie (IECB))
Bressollier, P. (Laboratoire de Chimie des Substances Naturelles, EA 1069, Antenne IUT, Departement Genie Biologique)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1635-1643 More about this Journal
Abstract
The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.
Keywords
L. plantarum 299v; surface-bound GAPDH; membrane permeability;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boekhorst, J., M. Wels, M. Kleerebezem, and R. J. Siezen. 2006. The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152: 3175-3183   DOI   ScienceOn
2 Chhatwal, G. S. 2002. Anchorless adhesins and invasins of Gram-positive bacteria: A new class of virulence factors. Trends Microbiol. 10: 205-208   DOI   PUBMED   ScienceOn
3 Corcoran, B. M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71: 3060-3067   DOI   ScienceOn
4 Grifantini, R., E. Bartolini, A. Muzzi, M. Draghi, E. Frigimelica, J. Berger, F. Randazzo, and G. Grandi. 2002. Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: From basic research to vaccine development. Ann. N. Y. Acad. Sci. 975: 202-216   DOI   PUBMED   ScienceOn
5 Ramiah, K., C. A. Van Reenen, and M. T. Dicks. 2008. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Res. Microbiol. 159: 470-475   DOI   ScienceOn
6 Villamon, E., V. Villalba, M. Mercedes Nogueras, J. M. Tomas, D. Gozalbo, and M. L. Gill. 2003. Glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme present in the periplasm of Aeromonas hydrophila. Antonie Van Leeuwenhoek 84: 31-38   DOI   ScienceOn
7 Morales, M. L., A. G. Gonzalez, and A. M. Troncoso. 1998. Ion-exclusion chromatographic determination of organic acids in vinegars. J. Chromat. A 822: 45-51   DOI   ScienceOn
8 Kinoshita, H., H. Uchida, Y. Kawai, T. Kawasaki, N. Wakahara, H. Matsuo, et al. 2008. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J. Appl. Microbiol. 104: 1667-1674   DOI   ScienceOn
9 Lamonica, J. M., M. Wagner, M. Eschenbrenner, L. E. Williams, T. L. Miller, G. Patra, and V. G. Del-Vecchio. 2005. Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infect. Immun. 73: 3646-3658   DOI   ScienceOn
10 Shapiro, M. H. 2008. Flow cytometry of bacterial membrane potential and permeability. Methods Molec. Med. 142: 175-186. In W. Scott Champney (ed.). New Antibiotic Targets. Humana Press Inc., Totowa, NJ
11 Gil, M. L., M. L. Delgado, and D. Gozalbo. 2001. Candida albicans cell wall-associated glyceraldehyde-3-phosphate dehydrogenase activity increases in response to starvation and temperature upshift. Med. Mycol. 39: 387-394   DOI   PUBMED   ScienceOn
12 Hirel, P. H., J. M. Schmitter, P. Dessen, G. Fayat, and S. Blanquet. 1989. Extent of N-terminal methionine excision within E. coli proteins is governed by the side chain length of the penultimate aminoacid. Proc. Natl. Acad. Sci. U.S.A. 86: 8247-8251   DOI   ScienceOn
13 Barbosa, M. S., S. N. Bao, P. F. Andreotti, F. P. de Faria, M. S. Felipe, L. dos Santos Feitosa, M. J. Mendes-Giannini, and C. M. Soares. 2006. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect. Immun. 74: 382-389   DOI   ScienceOn
14 Niedzielin, K., H. Kordecki, and B. Birkenfeld. 2001. A controlled, double-blind, randomized study on efficacy of Lactobacillus plantarum 299v in patients with irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol. 13: 1143-1147   DOI   ScienceOn
15 Bradford, H. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
16 Fothergill-Gilmore, L. A. and P. A. Michels. 1993. Evolution of glycosis. Prog. Biophys. Mol. Biol. 52: 105-235
17 Gil-Navarro, I., M. L. Gil, M. Casanova, J. O'Connor, J. P. Martinez, and D. Gozalbo. 1997. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J. Bacteriol. 179: 4992-4999   PUBMED   ScienceOn
18 Charalampopoulos, D., S. S Pandiella, and C. Webb. 2003. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int. J. Food Microbiol. 82: 133-141   DOI   ScienceOn
19 Antikainen, J., V. Kuparinen, K. L$\ddot{a}$hteenmaki, and T. K. Korhonen. 2007. pH-dependent association of enolase and GAPDH of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J. Bacteriol. 189: 4539-4543   DOI   ScienceOn
20 Delgado, M. L., J. E. O'Connor, I. Azorin, J. Renau-Piqueras, M. L. Gil, and D. Gozalbo. 2001. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147: 411-417   PUBMED   ScienceOn
21 Parvez, S., K. A. Malik, S. Ah Kang, and H.-Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185   DOI   ScienceOn
22 Bergmann, S., M. Rohde, G. S. Chhatwal, and S. Hammerschmidt. 2001. Alpha-enolase of Streptococcus pneumoniae is a plasmin (ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40: 1273-1287   DOI   ScienceOn
23 Gozalbo, D., I. Gil-Navarro, I. Azorin, J. Renau-Piqueras, J. P. Martinez, and M. L. Gil. 1998. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect. Immun. 66: 2052-2059   PUBMED   ScienceOn
24 Ling, E., G. Feldman, M. Portnoi, R. Dagan, K. Overweg, F. Mulholland, V. Chalifa-Caspi, J. Wells, and Y. Mizrachi-Nebenzahl. 2004. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin. Exp. Immunol. 138: 290-298   DOI   PUBMED   ScienceOn
25 Hurmalainen, V., S. Edelman, J. Antikainen, M. Baumann, K. Lahteenmäki, and R. K. Korhonen. 2007. Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153: 1112-1122   DOI   ScienceOn
26 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
27 Pancholi, V. and V. A. Fischetti. 1997. Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: Signal transduction between streptococci and pharyngeal cells. J. Exp. Med. 186: 1633-1643   DOI   ScienceOn
28 Pancholi, V. and V. A. Fischetti. 1992. Major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med. 176: 415-426   DOI   ScienceOn
29 Egea, L., L. Aguilera, R. Gimenez, M. A. Sorolla, M. A. Aguilar, J. Badia, and L. Baldomaa. 2007. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: Interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int. J. Biochem. Cell Biol. 39: 1190-1203   DOI   ScienceOn
30 Delgado, M. L., M. L. Gil, and D. Gozalbo. 2003. Starvation and temperature upshift cause an increase in the enzymatically cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res. 4: 297-303   DOI   ScienceOn
31 Schaumburg, J., O. Diekmann, P. Hagendorff, S. Bergmann, M. Rohde, S. Hammerschmidt, L. Jansch, J. Wehland, and U. Karst. 2004. The cell wall subproteome of Listeria monocytogenes. Proteomics 4: 2991-3006   DOI   ScienceOn
32 Ferdinand, W. 1964. The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase. Biochem. J. 92: 578-585   PUBMED   ScienceOn
33 Kelly, P., P. B. Maguire, M. Bennett, D. Fitzgerald, R. J. Edwards, B. Thiede, et al. 2005. Correlation of probiotic Lactobacillus salivarius growth phase with its cell wallassociated proteome. FEMS Microbiol. Lett. 252: 153-159   DOI   ScienceOn
34 Pancholi, V. and G. S. Chhatwal. 2003. Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. 293: 391-401   DOI   ScienceOn