• Title/Summary/Keyword: Membrane Permeability

Search Result 927, Processing Time 0.026 seconds

Effects of Various Nucleotides on the Membrane Permeability (Nucleotides가 세포막 투과도에 미치는 영향)

  • Lee, Joong-Woo;Jeong, Seong-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 1989
  • The present study was designed to investigate i) the action of various nucleotides on membrane permeability of rat red blood cell and hepatocyte for $Na^{+}$ and $Rb^{+}$ ii) the characteristics of purinoceptors on these cell membranes. Blood from Sprague-Dawley rats was obtained by carotid arterial cannulation. Red blood cells were then washed 3 times with saline at $4{\circ}C$. Hepatic parenchymal cells were isolated from rat livers by using a modification of the Berry and Friend (1969) method. For the $Na^{+}$ influx studies, isolated RBC and hepatocyte were incubated in incubation medium containing $^{22}Na^{+}0.2\;{\mu}Ci/ml$ at $37^{\circ}C$. After various time intervals samples were removed from the incubation flask and washed out 3 times with ice-cold washing solutions. Cells were destroyed by adding Triton X-100 and TCA solution. After centrifugation, the supernatants were assayed for $^{22}Na^{+}$ by gamma counter. $^{86}Rb^{+}$ was used to simulate $K^{+}$ in these $K^{+}efflux$ studies. Isolated hepatocytes were incubated for 60 min in the loading solution containing $^{86}Rb^{+}\;10\;{\mu}Ci/ml$ at $37^{\circ}C$. After loading, the cells washed out 3 times by centrifugation with washing solution. The cells were incubated in buffer solution at $37^{\circ}C$. At intervals thereafter, samples were removed and centrifuged. The supernatants were analyzed for $^{86}Rb^{+}$ by liquid scintillation counter. The main results of the experiments were: 1) ATP and ATPP increased in both $^{22}Na^{+}$ influx and $^{86}Rb^{+}$ efflux in the red blood cell. Although ADP showed a tendency to increase in RBC membrane permeability for $^{22}Na^{+}$ and $^{86}Rb^{+}$, the changes were not significantly different from the control. 2) The Significant changes in $^{22}Na^{+}$ and $^{86}Rb^{+}$ flux by ATP were also demonstrated in hepatocyte. ATPP and ADP showed a tendency to increase in hepatocyte membrane permeability for both ions. 3) Other nucleoside triphosphates-ITP, GTP and CTP-did not change in membrane permeability for $^{22}Na^{+}$ and $^{86}Rb^{+}$ in RBC and hepatocyte. In conclusion, not only ATP but also ATPP activate purinoceptors and change in membrane permeability for $Na^{+}$ and $K^{+}$. In order to activate purinoceptors on the cell membrane, the nucleotides have to possess intact adenine moiety and three phosphates or more in its molecule.

  • PDF

Preparation and Characterization of PTMSP/PDMS-zeolite Composite Membranes for Gas Separation (기체분리를 위한 PTMSP/PDMS-zeolite 복합막의 제조 및 특성)

  • Kim, Na-Eun;Kang, Tae-Beom;Hong, Se Lyung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.342-351
    • /
    • 2012
  • In this study, PTMSP[poly(1-trimethylsilyl-1-propyne)]/PDMS[poly(dimethylsioxane)]-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes were made to incorporate zeolite into PTMSP/PDMS graft copolymer in order to improve the selectivity and thermal stability, the drop of permeability by physical aging effect during long period of time for the PTMSP membrane. To investigate the physico-chemical characteristics of composite membranes, the analytical methods such as FT-IR, $^1H$-NMR, TGA, SEM, and GPC have been utilized. The gas permeability and selectivity properties of $H_2$ and $N_2$ were evaluated. The permeability of the PTMSP/PDMS-NaY zeolite and PTMSP/PDMS-NaA zeolite composite membranes than PTMSP/PDMS graft copolymer membrane increased, increased as zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as zeolite content increased. PTMSP/PDMS-NaA zeolite composite membrane showed better permeability and separation factor than PTMSP/PDMS-NaY zeolite composite membrane.

Influences of Membrane Fouling on Water Permeability of Hollow Fiber Microfiltration Membrane (막오염현상이 중공사정밀여과막의 물투과특성에 미치는 영향)

  • Kim, Boo-Gil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • The effects of membrane fouling on the water permeability were examined using the hollow fiber microfiltration (HMF)membrane. A membrane module with a pore size of 0.1 micron was submerged in the permeation tank and water bath. The applied pressure was 12.4 kPa for direct solid-liquid separation of activated sludge. As the concentration of MLSS(880~2180mg/l) of the feed solution increased, the decreasing rates of the water flux increased and the membrane was clogged more rapidly. The water flux through the membrane did not increase effectively even with the increase in the applied pressure(40.0~93.3kPa). When the membrane was cleaned with water, the recovery rate of water flux were larger for lower applied pressure. The results indicated that the process of direct solid-liquid separation using HMF membrane was effective at lower pressure.

  • PDF

Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC (PEMFC의 고분자막에서 지지체가 고분자전해질 막 성능 및 전기화학적 내구성에 미치는 영향)

  • Oh, Sohyung;Lim, Dae Hyun;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.524-529
    • /
    • 2020
  • To increase the mechanical durability of the proton exchange membrane fuel cells, a reinforced membrane in which a support is placed in the polymer membrane is used. The support mainly uses e-PTFE, which is hydrophobic and does not transfer ions, which may cause performance degradation. In this study, we investigated the effect of e-PTFE support on PEMFC performance and electrochemical durability. In this study, the reinforced membrane with the support was compared with the single membrane (non-reinforced membrane). Due to the hydrophobicity of the support, the water diffusion coefficient of the reinforced membrane was lower than that of the single membrane. The reinforced membrane had a lower water diffusion coefficient, resulting in higher HFR, which is the membrane migration resistance of ions, than that of a single membrane. Due to the low hydrogen permeability of the support, the OCV of the reinforced membrane was higher than that of the single membrane. The support was shown to reduce the hydrogen permeability, thereby reducing the rate of radical generation, thereby improving the electrochemical durability of the reinforced membrane.

Inhibition of Glutamate-Induced Change in Mitochondrial Membrane Permeability in PC12 cells by 1-Methylated β-carbolines

  • Han, Eun-Sook;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.112-118
    • /
    • 2003
  • 1-Methylated $\beta$-carbolines (harmaline and harmalol) and antioxidants (N-acetylcysteine and ascorbate) reduced the loss of cell viability in differentiated PC 12 cells treated with 5 mM glutamate. $\beta$-Carbolines prevented the glutamate-induced decrease in mitochondrial membrane potential, cytochrome c release and caspase-3 activation in PC 12 cells. $\beta$-Carbolines reduced the formation of reactive oxygen species and depletion of glutathione due to glutamate in PC12 cells. $\beta$-Carbolines revealed a scavenging action on hydrogen peroxide and reduced the iron and EDTA-mediated degradation of 2-deoxy-D-ribose. The results suggest that I-methylated $\beta$-carbolines attenuate the cytotoxic effect of glutamate on PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.

Preparation of Zeolite-Filled PDMS Membranes and Its Properties for Organic Vapor Separation

  • Kim, Min-Joung;Youm, Kyung-Ho
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • In order to improve organic vapor separation efficiency of polydimethylsiloxane (PDMS) membrane, various zeolites (zeolite 4A, zeolite 13X and natural zeolite) were introduced into a thin PDMS film. The measurements of permeability and selectivity of zeolite-filled PDMS membranes were carried out with a CO$_2$gas and a CO$_2$gas/acetic acid vapor mixture, respectively. The CO$_2$permeability of zeolite-filled membranes decreased with increasing zeolite content and then recovered up to 30 wt% content. The effect of zeolite type on the improvement of CO$_2$permeability was found to be in the order of zeolite 13X > natural zeolite > 4A. The CO$_2$selectivity of zeolite-filled membranes was enhanced up to 9 times compared with the selectivity of a pure (unfilled) PDMS membrane. The effect of zeolite type on the improvement of CO$_2$selectivity was found to be in the order of natural zeolite > zeolite 13X > zeolite 4A.

  • PDF

Fabrication of Waterproof and Moisture-permeable Polyurethane Nanofiber Multi-Membrane (투습방수성 Polyurethane 나노섬유 Multi-Membrane의 제조)

  • Yang, Jeong-Han;Yoon, Nam-Sik;Kim, In-Kyo;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.107-117
    • /
    • 2011
  • Polyurethane (PU) was synthesized by one-shot process and the PU nanofiber was prepared by electrospinning. In this study, electrospun PU multi-membranes were prepared with various coating thickness ratio of base resin to top resin, where the base resin contains melamine curing agent and acid catalyst and the top resin contains water-repellent agent of fluoro-carbon compounds. The PU nanofiber multi-membranes were analyzed by field-emission scanning electron microscopy, differential scanning calorimeter, breathability, tensile strenth, air permeability and water resistance. The results showed that the PU multi-membrane provided excellent waterproof and moisture permeability.

Permeabilization of Ochrobactrum anthropi SY509 Cells with Organic Solvents for Whole Cell Biocatalyst

  • Park, Kyung-Oh;Song, Seung-Hoon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.147-150
    • /
    • 2004
  • Permeabilization is known to overcome cell membrane barriers of whole cell biocatalysts. The use of organic solvents is advantageous in terms of cost, simplicity, and efficiency. In this study, Ochrobactrum anthropi SY509 was permeabilized with various organic solvents. Treatment with organic solvents resulted in lower permeability barriers due to falling out lipids of the cell membrane. Therefore, permeabilized cells showed higher enzyme activity with no cell viability. Among various organic solvents, 0.5% (v/v) chloroform was selected as the most efficient permeabilizing reagent. Changes in the cell membrane structure were observe d and the residual amounts of phospholipids of the cell membrane were measured to investigate the mechanism of the improved permeability.

Gas Permeation Characteristics by Pebax/ZIF-9 Mixed Matrix Membrane (Pebax/ZIF-9 혼합막에 의한 기체투과 특성)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.325-335
    • /
    • 2022
  • In this study, zeolitic imidazolate framework-9 (ZIF-9) was synthesized and Pebax/ZIF-9 mixed membranes were prepared by varying the content in poly(ether-b-amide)-1657 (Pebax-1657), and then a single gas (N2, CO2) was permeated to investigate the gas permeation characteristics of the mixed membrane. As the ZIF-9 content incorporated into the pure Pebax membrane increased, the N2 permeability gradually decreased, and the CO2 permeability increased up to the Pebax/ZIF-9 3 wt% mixed membrane, and then decreased at the content thereafter. And among the mixed membranes, the Pebax/ZIF-9 3 wt% mixed membrane showed the highest selectivity of 69.3 by selectively accepting CO2 as the gate-opening phenomenon occurred for the polar gas, CO2. In addition, both the CO2 permeability and the CO2/N2 selectivity increased, resulting in the closest Robeson upper-bound.