DOI QR코드

DOI QR Code

Gas Permeation Characteristics by Pebax/ZIF-9 Mixed Matrix Membrane

Pebax/ZIF-9 혼합막에 의한 기체투과 특성

  • Yoon, Soong Seok (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
  • 윤숭석 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2022.08.29
  • Accepted : 2022.09.14
  • Published : 2022.10.31

Abstract

In this study, zeolitic imidazolate framework-9 (ZIF-9) was synthesized and Pebax/ZIF-9 mixed membranes were prepared by varying the content in poly(ether-b-amide)-1657 (Pebax-1657), and then a single gas (N2, CO2) was permeated to investigate the gas permeation characteristics of the mixed membrane. As the ZIF-9 content incorporated into the pure Pebax membrane increased, the N2 permeability gradually decreased, and the CO2 permeability increased up to the Pebax/ZIF-9 3 wt% mixed membrane, and then decreased at the content thereafter. And among the mixed membranes, the Pebax/ZIF-9 3 wt% mixed membrane showed the highest selectivity of 69.3 by selectively accepting CO2 as the gate-opening phenomenon occurred for the polar gas, CO2. In addition, both the CO2 permeability and the CO2/N2 selectivity increased, resulting in the closest Robeson upper-bound.

본 연구에서는 zeolitic imidazolate framework-9 (ZIF-9)을 합성하고 poly(ether-b-amide)-1657 (Pebax-1657) 내에 함량을 달리하여 Pebax/ZIF-9 혼합막을 제조한 다음 단일기체 (N2, CO2)를 투과하여 혼합막에 대한 기체 투과 특성을 조사하였다. 순수 Pebax 막 내에 혼입되는 ZIF-9 함량이 증가함에 따라 N2 투과도는 점차 감소하고, CO2 투과도는 Pebax/ZIF-9 3 wt% 혼합막까지 증가하다가 그 이후의 함량에서는 감소하였다. 그리고 혼합막들 중 Pebax/ZIF-9 3 wt% 혼합막은 극성 기체인 CO2에 대해 gate-opening 현상이 일어나면서 선택적으로 CO2를 받아들여 가장 높은 선택도 69.3을 보였다. 또한 CO2 투과도와 CO2/N2 선택도가 모두 증가하여 Robeson upper-bound에 가장 근접하는 결과를 얻었다.

Keywords

References

  1. W. Guan, Y. Dai, C. Dong, X. Yang, and Y. Xi, "Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review", J. Appl. Polym. Sci., 137, 48968 (2020). https://doi.org/10.1002/app.48968
  2. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for CO2 separation: A review", Sep. Purif. Technol., 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  3. J. Ahmad, W. U. Rehman, K. Deshmukh, S. K. Basha, B. Ahamed, and K. Chidambaram, "Recent advances in poly (amide-b-ethylene) based membranes for carbon dioxide (CO2) capture: A Review", Polym. Plast. Techno. Eng., 58, 366 (2019).
  4. Y. Xu, V. Ramanathan, and D. G. Victor, "Global warming will happen faster than we think", Nature, 564, 30 (2018). https://doi.org/10.1038/d41586-018-07586-5
  5. M. Karaszova, B. Zach, Z. Petrusova, V. Cervenka, M. Bobak, M. Syc, and P. Izak, "Post-combustion carbon capture by membrane separation, Review", Sep. and Purif. Technol., 238, 116448 (2020). https://doi.org/10.1016/j.seppur.2019.116448
  6. S. Meshkat, S. Kaliaguine, and D. Rodrigue, "Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation", Sep. Purif. Technol., 235, 116150 (2020). https://doi.org/10.1016/j.seppur.2019.116150
  7. J. W. Osterrieth and D. Fairen-Jimenez, "Metal-organic framework composites for theragnostics and drug delivery applications", Biotechnol. J., 16, 2000005 (2021). https://doi.org/10.1002/biot.202000005
  8. M. R. A. Hamid, T. C. S. Yaw, M. Z. M. Tohir, Ghani, W. A. W. A. K. Ghani, P. D. Sutrisna, and H. K. Jeong, "Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities", J. Ind. Eng. Chem., 98, 17 (2021). https://doi.org/10.1016/j.jiec.2021.03.047
  9. J. Winarta, A. Meshram, F. Zhu, R. Li, H. Jafar, K. Parmar, J. Liu, and B. Mu, "Metal-organic framework-based mixed-matrix membranes for gas separation: An overview", J. Polym. Sci., 58, 2518 (2020). https://doi.org/10.1002/pol.20200122
  10. A. N. Diaz, J. V. Rocha, V. P. Ting, N. Bimbo, K. Sapag, and T. J. Mays, "Flexible ZIFs: probing guest-induced flexibility with CO2, N2 and Ar adsorption", J. Chem. Technol. Biotechnol., 94, 3787 (2019). https://doi.org/10.1002/jctb.5947
  11. F. Sahin, B. Topuz, and H. Kalipcilar, "Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors", Microporous Mesoporous Mater., 261, 259 (2018). https://doi.org/10.1016/j.micromeso.2017.11.020
  12. J. Xie, N. Yan, F. Liu, Z. Qu, S. Yang, and P. Liu, "CO2 adsorption performance of ZIF-7 and its endurance in flue gas components", Front. Environ. Sci. Eng., 8, 162 (2014). https://doi.org/10.1007/s11783-013-0507-2
  13. S. Mosleh, G. Khanbabaei, M. Mozdianfard, and M. Hemmati, "Application of poly (amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation", Iran. Polym. J., 25, 977 (2016). https://doi.org/10.1007/s13726-016-0484-y
  14. J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, "Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation", Microporous Mesoporous Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
  15. Q. Li and H. Kim, "Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst", Fuel Process Technol., 100, 43 (2012). https://doi.org/10.1016/j.fuproc.2012.03.007
  16. L. T. Nguyen, K. K. Le, H. X. Truong, and N. T. Phan, "Metal-organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst", Catal. Sci. Technol., 2, 521 (2012). https://doi.org/10.1039/C1CY00386K
  17. M. Gomar and S. Yeganegi, "Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9)", Microporous Mesoporous Mater., 252, 167 (2017). https://doi.org/10.1016/j.micromeso.2017.06.010
  18. A. Ebrahimi and M. Mansournia, "Cost-effective fabrication of thermal-and chemical-stable ZIF-9 nanocrystals at ammonia atmosphere", J. Phys. Chem. Solids, 111, 12 (2017). https://doi.org/10.1016/j.jpcs.2017.07.006
  19. Y. Liu, Y. Huo, X. Wang, S. Yu, Y. Ai, Z. Chen, P. Zhang, L. Chen, G. Song, and N. S. Alharbi, "Impact of metal ions and organic ligands on uranium removal properties by zeolitic imidazolate framework materials", J. Clean. Prod., 278, 123216 (2021). https://doi.org/10.1016/j.jclepro.2020.123216
  20. J. Liu, C. Liu and A. Huang, "Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation", Int. J. Hydrogen Energy, 45, 703 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.230
  21. Y. Huang, D. Liu, Z. Liu, and C. Zhong, "Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation", Ind. Eng. Chem. Res., 55, 7164 (2016). https://doi.org/10.1021/acs.iecr.6b01290
  22. R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  23. J. Kim, T. Park, and E. Chung, "Effect of 2-MeIM/Zn molar ratio on CO2 permeability of Pebax/ZIF-8 mixed matrix membranes", J. Membr. Sci. Res., 7, 74 (2021).
  24. C. Jiao, Z. Li, X. Li, M. Wu, and H. Jiang, "Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8", Sep. Purif. Technol., 259, 118190 (2021). https://doi.org/10.1016/j.seppur.2020.118190
  25. S. A. Mohammed, A. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. Lau, N. Yusof, W. Salleh, and A. Ismail, "CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane", Sep. Purif. Technol., 223, 142 (2019). https://doi.org/10.1016/j.seppur.2019.04.061
  26. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", PNAS, 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
  27. S. Bendt, M. Hovestadt, U. Bohme, C. Paula, M. Dopken, M. Hartmann, and F. J. Keil, "Olefin/paraffin separation potential of ZIF-9 and ZIF-71: A combined experimental and theoretical study", Eur. J. Inorg. Chem., 2016, 4440 (2016). https://doi.org/10.1002/ejic.201600695
  28. J. Zakzeski, A. Debczak, P. C. A. Bruijnincx, and B. M. Weckhuysen, "Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9", Appl. Catal. A, Gen., 394, 79 (2011). https://doi.org/10.1016/j.apcata.2010.12.026
  29. C. K. Yeom, J. M. Lee, Y. T. Hong, and S. C. Kim, "Evaluation of gas transport parameters through dense polymeric membranes by continuous-flow technique", Membr. J., 9, 141 (1999).
  30. S. Yan, S. Ouyang, H. Xu, M. Zhao, X. Zhang, and J. Ye, "Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity", J. Mater. Chem. A, 4, 15126 (2016). https://doi.org/10.1039/C6TA04620G
  31. Z. Ozturk, J. P. Hofmann, M. Lutz, M. Mazaj, N. Z. Logar, and B. M. Weckhuys, "Controlled synthesis of phase-pure zeolitic imidazolate framework Co-ZIF", Eur. J. Inorg. Chem., 2015, 1625 (2015). https://doi.org/10.1002/ejic.201403077
  32. K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(etherblock-amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  33. S. Jeong, H. Sohn, and S. W. Kang, "Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport", Chem. Eng. J., 333, 276-279 (2018). https://doi.org/10.1016/j.cej.2017.09.125
  34. A. N. Diaz, N. Bimbo, L. T. Holyfield, I. Y. Ahmet, V. P. Ting, and T. J. Mays, "Structure- property relationships in metal-organic frameworks for hydrogen storage", Colloids Surf. A, Physicochem. Eng. Asp., 496, 77 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.061
  35. S. Aguado, G. Bergeret, M. P. Titus, V. Moizan, C. N. Draghi, N. Bats, and D. Farrusseng, "Guest-induced gate-opening of a zeolite imidazolate framework", New J. Chem., 35, 546 (2011). https://doi.org/10.1039/C0NJ00836B
  36. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  37. S. S. Yoon and S. R. Hong, "Effect of zeolitic imidazolate framework-7 in Pebax mixed membrane for CO2/N2 separation", Appl. Chem. Eng., 32, 393 (2021).
  38. H. S. Koh, M. K. Rana, J. Hwang, and D. J. Siegel, "Thermodynamic screening of metal-substituted MOFs for carbon capture", Phys. Chem. Chem. Phys., 15, 4573 (2013). https://doi.org/10.1039/c3cp50622c
  39. J. Park, H. Kim, S. S. Han, and Y. Jung, "Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution", J. Phys. Chem. Lett., 3, 826 (2012). https://doi.org/10.1021/jz300047n
  40. D. Yu, A. O. Yazaydin, J. R. Lane, P. D. C. Dietzel, and R. Q. Snurr, "A combined experimental and quantum chemical study of CO2 adsorption in the metal-organic framework CPO-27 with different metals", Chem. Sci., 4, 3544 (2013). https://doi.org/10.1039/c3sc51319j
  41. N. Liu, J. Cheng, W. Hou, X. Yang, and J. Zhou, "Pebax-based mixed matrix membranes loaded with graphene oxide/core shell ZIF-8@ZIF-67 nanocomposites improved CO2 permeability and selectivity", J. Appl. Polym. Sci., 138, 1 (2021)