References
- W. Guan, Y. Dai, C. Dong, X. Yang, and Y. Xi, "Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: A review", J. Appl. Polym. Sci., 137, 48968 (2020). https://doi.org/10.1002/app.48968
- M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for CO2 separation: A review", Sep. Purif. Technol., 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
- J. Ahmad, W. U. Rehman, K. Deshmukh, S. K. Basha, B. Ahamed, and K. Chidambaram, "Recent advances in poly (amide-b-ethylene) based membranes for carbon dioxide (CO2) capture: A Review", Polym. Plast. Techno. Eng., 58, 366 (2019).
- Y. Xu, V. Ramanathan, and D. G. Victor, "Global warming will happen faster than we think", Nature, 564, 30 (2018). https://doi.org/10.1038/d41586-018-07586-5
- M. Karaszova, B. Zach, Z. Petrusova, V. Cervenka, M. Bobak, M. Syc, and P. Izak, "Post-combustion carbon capture by membrane separation, Review", Sep. and Purif. Technol., 238, 116448 (2020). https://doi.org/10.1016/j.seppur.2019.116448
- S. Meshkat, S. Kaliaguine, and D. Rodrigue, "Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation", Sep. Purif. Technol., 235, 116150 (2020). https://doi.org/10.1016/j.seppur.2019.116150
- J. W. Osterrieth and D. Fairen-Jimenez, "Metal-organic framework composites for theragnostics and drug delivery applications", Biotechnol. J., 16, 2000005 (2021). https://doi.org/10.1002/biot.202000005
- M. R. A. Hamid, T. C. S. Yaw, M. Z. M. Tohir, Ghani, W. A. W. A. K. Ghani, P. D. Sutrisna, and H. K. Jeong, "Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities", J. Ind. Eng. Chem., 98, 17 (2021). https://doi.org/10.1016/j.jiec.2021.03.047
- J. Winarta, A. Meshram, F. Zhu, R. Li, H. Jafar, K. Parmar, J. Liu, and B. Mu, "Metal-organic framework-based mixed-matrix membranes for gas separation: An overview", J. Polym. Sci., 58, 2518 (2020). https://doi.org/10.1002/pol.20200122
- A. N. Diaz, J. V. Rocha, V. P. Ting, N. Bimbo, K. Sapag, and T. J. Mays, "Flexible ZIFs: probing guest-induced flexibility with CO2, N2 and Ar adsorption", J. Chem. Technol. Biotechnol., 94, 3787 (2019). https://doi.org/10.1002/jctb.5947
- F. Sahin, B. Topuz, and H. Kalipcilar, "Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors", Microporous Mesoporous Mater., 261, 259 (2018). https://doi.org/10.1016/j.micromeso.2017.11.020
- J. Xie, N. Yan, F. Liu, Z. Qu, S. Yang, and P. Liu, "CO2 adsorption performance of ZIF-7 and its endurance in flue gas components", Front. Environ. Sci. Eng., 8, 162 (2014). https://doi.org/10.1007/s11783-013-0507-2
- S. Mosleh, G. Khanbabaei, M. Mozdianfard, and M. Hemmati, "Application of poly (amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation", Iran. Polym. J., 25, 977 (2016). https://doi.org/10.1007/s13726-016-0484-y
- J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff, and Y. Li, "Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation", Microporous Mesoporous Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
- Q. Li and H. Kim, "Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst", Fuel Process Technol., 100, 43 (2012). https://doi.org/10.1016/j.fuproc.2012.03.007
- L. T. Nguyen, K. K. Le, H. X. Truong, and N. T. Phan, "Metal-organic frameworks for catalysis: the Knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst", Catal. Sci. Technol., 2, 521 (2012). https://doi.org/10.1039/C1CY00386K
- M. Gomar and S. Yeganegi, "Adsorption of 5-fluorouracil, hydroxyurea and mercaptopurine drugs on zeolitic imidazolate frameworks (ZIF-7, ZIF-8 and ZIF-9)", Microporous Mesoporous Mater., 252, 167 (2017). https://doi.org/10.1016/j.micromeso.2017.06.010
- A. Ebrahimi and M. Mansournia, "Cost-effective fabrication of thermal-and chemical-stable ZIF-9 nanocrystals at ammonia atmosphere", J. Phys. Chem. Solids, 111, 12 (2017). https://doi.org/10.1016/j.jpcs.2017.07.006
- Y. Liu, Y. Huo, X. Wang, S. Yu, Y. Ai, Z. Chen, P. Zhang, L. Chen, G. Song, and N. S. Alharbi, "Impact of metal ions and organic ligands on uranium removal properties by zeolitic imidazolate framework materials", J. Clean. Prod., 278, 123216 (2021). https://doi.org/10.1016/j.jclepro.2020.123216
- J. Liu, C. Liu and A. Huang, "Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation", Int. J. Hydrogen Energy, 45, 703 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.230
- Y. Huang, D. Liu, Z. Liu, and C. Zhong, "Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation", Ind. Eng. Chem. Res., 55, 7164 (2016). https://doi.org/10.1021/acs.iecr.6b01290
- R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar, "Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
- J. Kim, T. Park, and E. Chung, "Effect of 2-MeIM/Zn molar ratio on CO2 permeability of Pebax/ZIF-8 mixed matrix membranes", J. Membr. Sci. Res., 7, 74 (2021).
- C. Jiao, Z. Li, X. Li, M. Wu, and H. Jiang, "Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8", Sep. Purif. Technol., 259, 118190 (2021). https://doi.org/10.1016/j.seppur.2020.118190
- S. A. Mohammed, A. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W. Lau, N. Yusof, W. Salleh, and A. Ismail, "CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane", Sep. Purif. Technol., 223, 142 (2019). https://doi.org/10.1016/j.seppur.2019.04.061
- K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", PNAS, 103, 10186 (2006). https://doi.org/10.1073/pnas.0602439103
- S. Bendt, M. Hovestadt, U. Bohme, C. Paula, M. Dopken, M. Hartmann, and F. J. Keil, "Olefin/paraffin separation potential of ZIF-9 and ZIF-71: A combined experimental and theoretical study", Eur. J. Inorg. Chem., 2016, 4440 (2016). https://doi.org/10.1002/ejic.201600695
- J. Zakzeski, A. Debczak, P. C. A. Bruijnincx, and B. M. Weckhuysen, "Catalytic oxidation of aromatic oxygenates by the heterogeneous catalyst Co-ZIF-9", Appl. Catal. A, Gen., 394, 79 (2011). https://doi.org/10.1016/j.apcata.2010.12.026
- C. K. Yeom, J. M. Lee, Y. T. Hong, and S. C. Kim, "Evaluation of gas transport parameters through dense polymeric membranes by continuous-flow technique", Membr. J., 9, 141 (1999).
- S. Yan, S. Ouyang, H. Xu, M. Zhao, X. Zhang, and J. Ye, "Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity", J. Mater. Chem. A, 4, 15126 (2016). https://doi.org/10.1039/C6TA04620G
- Z. Ozturk, J. P. Hofmann, M. Lutz, M. Mazaj, N. Z. Logar, and B. M. Weckhuys, "Controlled synthesis of phase-pure zeolitic imidazolate framework Co-ZIF", Eur. J. Inorg. Chem., 2015, 1625 (2015). https://doi.org/10.1002/ejic.201403077
- K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(etherblock-amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
- S. Jeong, H. Sohn, and S. W. Kang, "Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport", Chem. Eng. J., 333, 276-279 (2018). https://doi.org/10.1016/j.cej.2017.09.125
- A. N. Diaz, N. Bimbo, L. T. Holyfield, I. Y. Ahmet, V. P. Ting, and T. J. Mays, "Structure- property relationships in metal-organic frameworks for hydrogen storage", Colloids Surf. A, Physicochem. Eng. Asp., 496, 77 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.061
- S. Aguado, G. Bergeret, M. P. Titus, V. Moizan, C. N. Draghi, N. Bats, and D. Farrusseng, "Guest-induced gate-opening of a zeolite imidazolate framework", New J. Chem., 35, 546 (2011). https://doi.org/10.1039/C0NJ00836B
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- S. S. Yoon and S. R. Hong, "Effect of zeolitic imidazolate framework-7 in Pebax mixed membrane for CO2/N2 separation", Appl. Chem. Eng., 32, 393 (2021).
- H. S. Koh, M. K. Rana, J. Hwang, and D. J. Siegel, "Thermodynamic screening of metal-substituted MOFs for carbon capture", Phys. Chem. Chem. Phys., 15, 4573 (2013). https://doi.org/10.1039/c3cp50622c
- J. Park, H. Kim, S. S. Han, and Y. Jung, "Tuning metal-organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution", J. Phys. Chem. Lett., 3, 826 (2012). https://doi.org/10.1021/jz300047n
- D. Yu, A. O. Yazaydin, J. R. Lane, P. D. C. Dietzel, and R. Q. Snurr, "A combined experimental and quantum chemical study of CO2 adsorption in the metal-organic framework CPO-27 with different metals", Chem. Sci., 4, 3544 (2013). https://doi.org/10.1039/c3sc51319j
- N. Liu, J. Cheng, W. Hou, X. Yang, and J. Zhou, "Pebax-based mixed matrix membranes loaded with graphene oxide/core shell ZIF-8@ZIF-67 nanocomposites improved CO2 permeability and selectivity", J. Appl. Polym. Sci., 138, 1 (2021)