• Title/Summary/Keyword: Membership 함수

Search Result 406, Processing Time 0.029 seconds

Fuzzy Controller with Adaptive Membership Function (적응형 소속함수를 가지는 퍼지 제어기)

  • Kim, Bong-Jae;Bang, Keun-Tae;Park, Hyun-Tae;Lyu, Sang-Wook;Lee, Hyun-Woo;Chong, Won-Yong;Lee, Soo-Huem
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.813-816
    • /
    • 1995
  • The shape and width of fuzzy membership function has an effect on performance of fuzzy controller. In this paper, neuro-fuzzy controller is proposed to improve the control performance of fuzzy controller. It has membership function, that is adapt to plant constant by using trained neural network. This neural network has been trained with back propagation algorithm. To show the effectiveness of proposed neuro-fuzzy controller with adaptive membership function, it is applied to plant (dead time + 1st order) with various plant constant.

  • PDF

Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor (퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어)

  • Hwang, G.H.;Kim, H.S.;Park, J.H.;Hwang, C.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

An Extraction of Linguistic Fuzzy Model from Input/Output Relation (입.출력 관계에서 언어적 퍼지모델의 추출)

  • 유완식;김성락;김종성;변증남;박동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1992
  • 퍼지제어기는 입.출력 관점에서 일반적으로 입.출력에 대한 비선형 함수로 볼수 있다. 전문가의 제어 행위의 입.출력 관계가 크리시(crisp) 비선형 함수로 표현되었을때 그것을 언어적 퍼지 모델링(linguistic fuzzy modelling)하는 방법이 1-입력/ 1-출력 및 2-입력/1-출력의 static 시스템에 대하여 제안되었다. 이를 위해 소속함수 제한조건(membership function constraint)의 개념을 제시하고 선형계획법에 의한 최적화 기법을 이용하여 소속함수의 생성에 관한 체계적인 방법을 제안한다.

  • PDF

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.357-365
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

ART2 Based Fuzzy Binarization Method with Low Information Loss (정보손실이 적은 ART2 기반 퍼지 이진화 방법)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1269-1274
    • /
    • 2014
  • In computer vision research, binarization procedure is one of the most frequently used tools to discriminate target objects from background in grey level binary image. Fuzzy binarization is a reliable technique in environment with high uncertainty such as medical image analysis by setting the threshold as the average of minimum and maximum brightness with triangle type fuzzy membership function. However, this technique is also known as contrast sensitive method thus its discrimination power is not so great when the image has low contrast difference between objects and backgrounds and suffer from information loss as a result. Thus, in this paper, we propose a fuzzy binarization using ART2 algorithm to handle such low contrast image analysis. Proposed ART2 algorithm is applied to determine the medium point of membership function in the fuzzy binarization paradigm. The proposed methods shows low information loss rate in our experiment.

An adaptive Fuzzy Binarization (적응 퍼지 이진화)

  • Jeon, Wang-Su;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.485-492
    • /
    • 2016
  • A role of the binarization is very important in separating the foreground and the background in the field of the computer vision. In this study, an adaptive fuzzy binarization is proposed. An ${\alpha}$-cut control ratio is obtained by the distribution of grey level of pixels in a sliding window, and binarization is performed using the value. To obtain the ${\alpha}$-cut, existing thresholding methods which execution speed is fast are used. The threshold values are set as the center of each membership function and the fuzzy intervals of the functions are specified with the distribution of grey level of the pixel. Then ${\alpha}$-control ratio is calculated using the specified function and binarization is performed according to the membership degree of the pixels. The experimental results show the proposed method can segment the foreground and the background well than existing binarization methods and decrease loss of the foreground.

A High-speed Fuzzy Controller with Integer Operations on GUI Environments (GUI 환경에서의 정수형 연산만을 사용한 고속 퍼지제어기)

  • Kim, Jong-Hyuk;Son, Ki-Sung;Lee, Byung-Kwon;Lee, Sang-Gu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.373-378
    • /
    • 2002
  • In fuzzy inferencing, most of conventional fuzzy controllers have problems of speed down in floating point operations of fuzzy membership functions in (0,1) as compared with integer operations. Therefore, in this paper, we propose a high-speed fuzzy controller with only integer operations. In this, for fast fuzzy computations, we use a scan line conversion algorithm to convert lines of each fuzzy linguistic term to the set of the closest integer pixels. We also implement a GUI (Graphic User Interface) application program for the convenient environments to modify and input fuzzy membership functions.

A Linguistic Case-based Fuzzy Reasoning based on SPMF (표준화된 매개변수 소속함수에 기반을 둔 언어적 케이스 기반 퍼지 추론)

  • Choi, Dae-Young
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.163-168
    • /
    • 2010
  • A linguistic case-based fuzzy reasoning (LCBFR) based on standardized parametric membership functions (SPMF) is proposed. It provides an efficient mechanism for a fuzzy reasoning within linear time complexity. Thus, it can be used to improve the speed of fuzzy reasoning. In the process of LCBFR, linguistic case indexing and retrieval based on SPMF is suggested. It can be processed relatively fast compared to the previous linguistic approximation methods. From the engineering viewpoint, it may be a valuable advantage.

An Optimal COA Defuzzifier for a Fuzzy Logic controller (퍼지 논리 제어기를 위한 최적의 COA 비퍼지화기)

  • 조인현;이동석;김종훈;김대진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.81-91
    • /
    • 1996
  • This paper proposes an optimal COA(Center Of Area) defuzzification method that improves the contr~lp erformance of a fuzzy logic controller. The defuzzification method incorporates both the membership values and the effective span of membership function6 in calculating a crisp value. An optimal effective span is determined automatically by the genetic algorithm thrqugh the training of some typical examples. Simulation of the proposed COA defuzzifier to the truck backer-upper control problem is presented and the control performance of the praposed COA defuzzifier outperforms that of the conventional COA defuzzifier by more than 20% in terms of ayerage tracing distance.

  • PDF