• Title/Summary/Keyword: Melting method

Search Result 834, Processing Time 0.027 seconds

Temperature Analysis for Welding Part of Capstan Drum using Finite Element Method (유한요소법을 이용한 캡스턴 드럼의 용접부 온도해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.322-328
    • /
    • 2000
  • Welding means that metal parts are joined by melting (with or without a filler material) or that new material is added to a metal part by melting. Welding of metal parts is an important technology method in manufacturing processes of capstan drum for costal vessels. Thermal stresses due to the non-uniform temperature fields during welding influence both the fabrication and the use of the weldment. In the problem of this thermal effect, particularly it is a well known that analysis for temperature gradient, temperature distribution, and the like become consequence factors to a safety and a strength design. This paper analyzes the temperature distribution of welding part in capstan drum for the inshore and costal vessels using finite element method. At early stage of the cooling after welding processes, the abrupt temperature gradient has been shown in vicinity of the bottom face of welding part. Therefore it calculates the numerical value that can be applied to the optimal design of welding parts in the shapes for capstan drum.

  • PDF

A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method (용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구)

  • 김재철;박기헌;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

Thermal Properties of Linear Shape Polylactic Acid/Star Shape Polylactic Acid Blends (선형 폴리락틱산/스타형 폴리락틱산 블렌드의 열적 특성 변화에 대한 연구)

  • 천상욱;김수현;김영하;강호종
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.333-341
    • /
    • 2000
  • Blends consisting of linear shape polylactic acid and star shape polylactic acid (L-PLLA/S-PLLA) have been prepared by melt and solution blending. The effect of blending method on the thermal properties and crystallization behavior of L-PLLA/S-PLLA blends has been investigated. The molecular weight decrease was revealed both in melt and solution blending. S-PLLA was found to be more stable than L-PLLA in the reduction of molecular weight during the course of blending due to its star shape structure. As a result, broad molecular weight distribution was obtained in solution blending. It was found that melting temperature and glass transition temperature decrease with increasing S-PLLA content. Blending method had large influence on the glass transition temperature of PLLA blends, while less effect on melting temperature. From DSC results, it can be noticed that solution blending is more effective blending method to obtain higher crystallinity than melt blending for S-PLLA and blend with higher S-PLLA content.

  • PDF

Effects of Laser Surface Melting on the Pitting Resistance of Alloy 690 (Alloy 690의 공식저항성에 미치는 레이저 표면 용융의 영향)

  • Kim, Young-Kyu;Jhee, Tae-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • The effect of laser welding and surface treatment, developed as a method of repairing steam generator tubes, on the pitting corrosion resistance of alloy 690 was examined. The surfaces of some heat-treated Alloy 690 materials were melt-treated using the Nd-YAG laser beam, and then examined to characterize the microstructures. The resistance to pitting corrosion was evaluated by measuring of Ep(pitting potential) through the electrochemical tests and also by measuring the degree of pit generation through the immersion tests. The pit formation characteristics were investigated by observing microstructural changes and pit morphologies. The results show that the resistance to pitting corrosion increases in the order of the following list; solution annealed Alloy 690, thermally treated Alloy 690, and laser surface melt-treated Alloy 690. The melted region was found to have a cellular structure and fine precipitates. It was confirmed that the resistance of Alloy 690 to pit initiation and also to pit propagation was higher when it was laser treated than treated otherwise.

  • PDF

Microwave Melting of the Basalt Rock and Fiber Spinning (마이크로 파를 이용한 현무암 용융과 섬유 제조)

  • Huh, You;Kim, Hyung-Jin;Yang, Hee-Won;Jeon, Kyung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.78-85
    • /
    • 2009
  • High performance functional fibers are demanded increasingly in the modern industries, while the inorganic fibers such as carbon fibers, glass fibers, and metal fibers are representative among them in that they have high strength, consistent properties in a broad temperature change, etc.. This paper reports on the experimental trial to apply the microwave furnace on melting the natural basalt rock that spreads overall on the global surface and is supposed to be used as the raw material for the inorganic high performance fiber. Results showed that the new method to use the microwave as the heating source to melt the basalt rock was feasible. The crucible spinning could effectively applied for producing the basalt fibers up to 10 micrometer diameter, when the crushed basalt rocks were used. For drawing the molten basalt the drawing roller surface feature was a very important factor.

A Study of the Thermal Analysis of Horizontal Fillet Joints by Considering the Bead Shape in GMA Welding (GMA 용접에서 비드형상을 고려한 수평필릿용접부의 온도해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.71-78
    • /
    • 2001
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

Thermal Characteristic Simulation and Property Evaluation of High Melting Point Materials by Pulsed Current Activated Sintering Process (PCAS공정에 의한 고융점 소결체 열전달 해석 및 특성분석)

  • Nam, Hyo-Eun;Jang, Jun-Ho;Park, Hyun-Kuk;Oh, Ik-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • In this study, the effects of internal heat treatment associated sintering temperatures were simulated by the Finite Element Method (FEM). The sintering mechanism of pulsed current activated sintering process (PCAS) is still unclear because of some unexplainable heat transfer phenomena in coupled multi-physical fields, as well as the difficulty in measuring the interior temperatures of metal powder. We have carried out simulation study to find out thermal distributions between graphite mold and Ruthenium powder prior to PCAS process. For PCAS process, heating rate was maintained at $100^{\circ}C/min$ the simulation indicates that the sintering temperature range was between $1000^{\circ}C$ to $1300^{\circ}C$ under 60 MPa. The heat transfer inside the Ruthenium sintered-body sample was modelled through the whole process in order to predict the minimum interior temperature. Thermal simulation shows that the interior temperature gradient decreased by graphite punch length and calculation results well agreed with the PCAS field test results.

Design of High Frequency Casting Machine for Dental using Induction Heating System (유도가열 시스템을 적용한 치과용 고주파 주조기 설계)

  • Song, Seung-Gun;Lim, Sang-Kil;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.79-87
    • /
    • 2012
  • Currently, The method to produce a brewing body for dentistry supplementation water produces a brewing body by fabrication, burying and it is heat wish in city gas and oxygen. It uses an original judgment found airplane the brewing body uses a spring of the back wait that melting temperature dissolved various alloys in by a blow pipe, and to generate centrifugal force and produces it. In addition, because it uses preheating to dissolve an alloy in general, it is hard to regulate the appropriate melting temperature of the alloy and brewing time and generates a brewing defect hereby same as gas industry and pinhole and shows the defect of the supplementation thing due to the super-heating. In this paper, We developed the high induction heating system which it could set brewing time,temperature and had durability and security,by the kind of the alloy to produce a high quality prosthetic thing brewing body.

Texturing of YBa$_2Cu_3O_x$ thick film on MgO(001) single crystal (YBa$_2Cu_3O_x$ 후막의 단결정 MgO(001) 위에서의 배향화)

  • Kim, Eu-Gene;Kim, Myeong-Hui;Han, Young-Hee;Sung, Tae-Hyun;Kim, Sang-Joon;No, Kwang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.271-274
    • /
    • 1999
  • We are investigating epitaxially grown YBa$_2Cu_3O_x$(123) on MgO single crystal by partial melting process for high power application. After fabricating of BaCuO$_2$(011), Y$_2BaCuO_5$(211) powder, we made YBa$_2Cu_3O_x$(123) Paste with just mixing of (211), (011) and CuO(001) powders. Screen printing method was used to coat YBa$_2Cu_3O_x$(123) paste on MgO single crystal. To reduce the reaction in low temperature, rapid heating was conducted at partial melting temperature. The film was analysed with the difference of cooling-rate, thickness, reaction temperature by XRD, SEM, in-plane alignment, out-of-plane alignment, temperature-resistivity characteristics.

  • PDF

Scheduling of a Casting Sequence Under Just-In-Time (JIT) Production (적시 생산 방식에서의 주조공정 스케줄링)

  • Park, Yong-Kuk;Yang, Jung-Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.40-48
    • /
    • 2009
  • In this article, scheduling of a casting sequence is studied in a casting foundry which must deliver products according to the Just-in-time(JIT) production policy of a customer. When a foundry manufactures a variety of casts with an identical alloy simultaneously, it frequently faces the task of production scheduling. An optimal casting schedule should be emphasized in order to maximize the production rate and raw material efficiency under the constraints of limited resources; melting furnaces and operation time for a casting machine. To solve this practical problem-fulfilling the objectives of casting the assigned mixed orders for the highest raw material efficiency in a way specified by the customer's JIT schedule, we implement simple integer programming. A simulation to solve a real production problem in a typical casting plant proves that the proposed method provides a feasible solution with a high accuracy for a complex, multi-variable and multi-constraint optimization problem. Employing this simple methodology, a casting foundry having an automated casting machine can produce a mixed order of casts with a maximum furnace utilization within the due date, and provide them according to their customer's JIT inventory policy.