• Title/Summary/Keyword: Melanin synthesis

Search Result 449, Processing Time 0.07 seconds

Inhibitory effects of Kirengeshoma koreana Nakai on Melanogenesis in B16F10 melanoma cells

  • Jang, Tae-Won;Choi, Ji-Soo;Mun, Jeong-Yun;Im, Jong-Yun;Nam, Su-Hwan;Kim, Do-Wan;Lee, Seung-Hyun;Park, Jae-Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.117-117
    • /
    • 2019
  • Kirengeshoma koreana Nakai (K. koreana)was Saxifragaceae and rare plants in Korea, which is classified as an Critically Endangered (CR) species in Korea. Therefore, most of the studies on it were ecological and taxonomic, and there are no studies on biological activity. In this study, we evaluated the whitening activity of K. koreana extract (KKE). Melanogenesis Inhibitory effects were demonstrated by western-bot and RT-PCR for the effects of KKE on MITF, tyrosinase, TRP-1 and TRP-2 in IBMX-treated B16F10 melanoma cells. IBMX were reported as melanin synthesis enhancers. It could increase intracellular melanin synthesis by activation of the microphthalmia-associated transcription factor (MITF) signaling pathway. KKE showed no cytotoxicity at B16F10. In addition, KKE effectively inhibited the protein and mRNA levels of MITF, tyrosinase, TRP-1 and TRP-2. In conclusion, KKE inhibited melanin synthesis by inhibiting the expression of MITF and its downstream pathways tyrosinase, TRP-1 and TRP-2. Therefore, it was confirmed that K. koreana is a valuable resource for functional cosmetic and biomaterials.

  • PDF

Effects of Kojic acid, Arbutin and Vitamin C on cell viability and melanin synthesis in B16BL6 cells

  • Park, Yumi;Lee, Jongsung;Park, Junho;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.1
    • /
    • pp.151-167
    • /
    • 2003
  • Melanin biosynthesis is a human defense mechanism to protect skin from UV irradiation and also determines colors of hair and skin. However, as a interest on skin-whitening increases, researches to prevent pigmentation and hypersynthesis of melanin in skin are being actively in progress. Active components used as a whitening agent in cosmeceuticals are kojic acid, arbutin, vitamin C and hydroquinone. However, until now, because comparison researches among them in the aspect of both melanin formation and cellular toxicity have not been performed, we can't exactly estimate merits and defects of them as a whitening agent. To this end, we performed experiments to compare their effects on cell viability and melanin formation. As a first step, in vitro tyrosinase inhibition assay was done. While kojic acid and hydroquinone showed strong inhibition activities(their IC$\_$50/s are all < 100uM), arbutin and vitamin C showed weak activities. IC$\_$50/s of arbutin and vitamin C are 100uM and 400∼500uM, respectively. In B16BL6 melanoma cells, like in vitro tyrosinase inhibition assay, arbutin and kojic acid showed more strong inhibition effect on melanin synthesis than vitamin C. And unlike arbutin, vitamin C and kojic acid induced cell death at high concentration. Although arbutin showed no cytotoxicity, it has side effect to induce morphological change at high concentration.. In this paper, we suggest both kojic acid and arbutin have stronger ability to inhibit melanogenesis than vitamin C. And they also have side effect, that is, kojic acid induces cell death like vitamin C and arbutin changes cell morphology respectively.

Inhibitory Effect of the Ethanol Extract of Fagopyrum escuentum on Melanin Synthesis (교맥 에탄올 추출물의 멜라닌생성 억제효과)

  • Kim, Dae-Sung;No, Seong-Taek;Lee, Jang-Cheon;Lim, Kyu-Sang;Shin, Mee-Ran;Woo, Won-Hong;Mun, Yeun-Ja
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.70-76
    • /
    • 2006
  • The aim of this study was to investigate the effect of ethanol extract of Fagopyrum escuentum(FE) on the melanogenesis. To determine whether ethanol extract of FE suppress melanin synthesis in cellular level, B16F10 melanoma cells were cultured in the presence of different concentrations of FE ethanol extract. In the present study, the author examined the effects of FE ethanol extract on cell proliferation, melanin contents, tyrosinase activity. Cell proliferation was slightly increased by treatment with ethanol extract of FE (25-200 ${\mu}$g/ml). The ethanol extract of FE effectively suppressed melanin contents at a dose of 100 ${\mu}$g/ml. It was observed that the color of cell pellets was totally whitened compared with the control. The ethanol extract of FE inhibited tyrosinase activity, regulate melanin biosynthesis as the key enzyme in melanogenesis. These results suggest that the ethanol extract of FE exerts its depigmenting effects through the suppression of tyrosinase activity. And it may be a potent depigmetation agent in hyperpigmentation condition.

  • PDF

Effects of Galgeungyulpitang on Cellular Production of Melanin and Elastase

  • Jo, Na Young;Lee, Eun Yong;Lee, Cham Kyul;Roh, Jeong Du
    • Journal of Acupuncture Research
    • /
    • v.36 no.1
    • /
    • pp.33-37
    • /
    • 2019
  • Background: This study was designed to investigate the potential effects of Galgeungyulpitang for whitening and elasticity treatment by examining its effect on melanoma cells. Methods: The effects of Galgeungyulpitang on B16/F10 melanoma cell viability, production of melanin, tyrosinase and elastase, were investigated. Cell viability was measured by colorimetric assay that assesses cell metabolic activity (MTT assay). Melanin was measured by Hosei's method, tyrosinase was measured by Yogi's method and elastase was measured by James's method. Results: At concentrations higher than $500{\mu}g/mL$ Galgeungyulpitang, cell viability was significantly reduced ($p{\leq}0.05$). At concentrations of $500{\mu}g/mL$ and lower, morphological changes were not observed. The rate of melanin synthesis was significantly reduced to $73.49%{\pm}2.92%$ at a concentration of $500{\mu}g/mL$ Galgeungyulpitang compared with untreated cells (p < 0.05). Extracellular tyrosinase production was not significantly decreased in vitro, however, intracellular tyrosinase production was significantly reduced to $76.06%{\pm}2.17%$ when treated with Galgeungyulpitang at a concentration of $500{\mu}g/mL$ compared with the control (p < 0.05). Elastase Type 1 production was significantly reduced to $74.98%{\pm}3.24%$ and $69.62%{\pm}4.66%$ at concentrations of 250 and $500{\mu}g/mL$ Galgeungyulpitang, respectively (p < 0.05). Elastase Type 4 production was significantly reduced to $72.77%{\pm}3.52%$ at concentrations of 250 and $500{\mu}g/mL$ (p < 0.05). Conclusion: The results in this study showed that Galgeungyulpitang may inhibit melanin and tyrosinase synthesis, and inhibit elastase production, suggesting that Galgeungyulpitang may be potentially beneficial for skin whitening and loss of skin elasticity treatments.

Inhibitory Effect of Pinus rigida × Pinus taeda on Melanogenesis in B16 F10 Cells

  • Woo-Jin Oh;Seo-Yoon Park;Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.56-56
    • /
    • 2023
  • The cone of Pinus rigida × Pinus taeda (PRT), a plant in the Pinaceae family, has long been used in traditional medicine to treat hemostasis, bruises, and burns. Previous research has shown that regulating oxidation-reduction reactions in reactive oxygen species can help inhibit melanogenesis, the process of melanin synthesis, which is a common target for addressing hyperpigmentation. Inhibiting tyrosinase is also known to be effective in this regard. Based on these findings, we conducted an investigation into the inhibitory effect of the ethyl acetate fraction of PRT (ERT) on melanogenesis in B16 F10 cells. We know that the expression levels of melanin biosynthesis-related proteins, including tyrosinase, TRP-1, and TRP-2, are regulated by MITF (microphthalmia-associated transcription factor) and cAMP, with cAMP affecting the activity of protein kinase A (PKA). PKA can reduce melanogenesis, and CREB reduces the phosphorylation of melanin-producing enzymes. In addition, the MAPK signaling pathway, composed of ERK, JNK, p38, and other factors, is also known to play a role in the inhibition of melanogenesis in melanocytes. Our immunoblotting results showed that ERT inhibited the expression of melanin production-related proteins (tyrosinase, TRP-1, TRP-2, and MITF) that were significantly increased by a-MSH treatment to promote melanin production. Furthermore, the phosphorylation levels of factors related to cAMP/PKA/CREB and MAPK signaling pathways were significantly reduced without affecting the total form. In conclusion, we believe that treatment with ERT can inhibit melanin synthesis by modulating the phosphorylation of cAMP/PKA/CREB and MAPK signaling pathways at the cellular level. These findings suggest the potential of ERT as a raw material for functional cosmetics and pharmaceuticals, thanks to its antioxidant activity and ability to inhibit melanogenesis. We thought that these findings of ERT as a natural plant resource will inspire further research and development in this area.

  • PDF

Inhibitory Effect of β-Glucan Extracted from Cauliflower Mushroom Sparassis crispa on Tyrosinase Activity and Melanin Synthesis (꽃송이버섯에서 추출한 β-glucan의 tyrosinase 활성과 멜라닌 합성 억제 효능)

  • Oh, Chul Hyun;Ku, Mi Jung;Lee, Yong Hwan
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.1019-1027
    • /
    • 2021
  • There are a lot of efforts to develop new compounds having skin whitening effect from natural products. Sparassis crispa is a medicinal mushroom containing more than 40% β-glucan, which exhibits anticancer and immunostimulating effects. The aim of this study was to assess the availability of β-glucan extracted from cauliflower mushroom S. crispa as a skin whitener through the evaluation of inhibitory effects of melanin synthesis and tyrosinase activity and their mechanisms. B16F1 cells were treated with S. crispa β-glucan (10, 100, and 1,000 ㎍/ml, respectively) and α-melanocyte stimulating hormone (α-MSH), simultaneously. Content of melanin synthesis and tyrosinase activity were determined. The expressions levels of tyrosinase, tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) were also measured by western blotting. Treatment with 10, 100 and 1,000 ㎍/ml S. crispa β-glucan and 200 nM α-MSH significantly decreased melanin synthesis by 13.9%, 18.7% and 39.5%, respectively, and tyrosinase activity by 15.6%, 26.9% and 43.2%, respectively, compared to the α-MSH alone group. In addition, S. crispa β-glucan inhibited expressions of tyrosinase, TRP-1, TRP-2 and MITF induced by α-MSH. These results indicated that S. crispa β-glucan inhibited MITF expression, thereby reducing tyrosinase expression and inhibiting melanin production in B16F1 melanoma cells. Therefore, S. crispa β-glucan might be available as a skin whitener.

Idescarpin Isolated from the Fruits of Idesia polycarpa Inhibits Melanin Biosynthesis

  • Baek Seung-Hwa;Kim Dong-Hyun;Lee Chan-Yong;Kho Yung-Hee;Lee Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.667-672
    • /
    • 2006
  • Tyrosinase is an enzyme that catalyzes the biosynthetic pathway of melanin pigments participating in the coloring of skin, hair, and eyes, and is widely distributed in nature. The inhibitory compounds of tyrosinase have been extensively used as a cosmetic agent with a skin-whitening effect. In this paper, several plant extracts were screened using Melan-a cells for the melanin biosynthesis inhibition activity, and Idesia polycarpa was selected. A melanin biosynthesis inhibitor was isolated from I. polycarpa fruits by activity-guided fractionation, and the inhibitor was identified as 6-hydroxy-2-[[[(1-hydroxy-6-oxo-2-cyclohexenl-yl)carbonyl]oxy]methyl]phenyl$\beta$-D-glucopyranoside (idescrapin) by comparing it with reported spectral data. Idescarpin $(IC_{50}=8{\mu}g/ml)$ reduced melanin content compared with the vehicle. In addition, the inhibitory activity of idescarpin for melanin synthesis is mediated by decreasing tyrosinase protein rather than directly inhibiting the tyrosinase activity. These results suggest that idescarpin isolated from I. polycarpa fruits may be used as a skin-whitening agent.

Anti-pigmentation Effects of Panax vietnamensis Extracts via Tyrosinase Expression (Tyrosinase 발현 조절을 통한 Panax vietnamensis 추출물의 Anti-pigmentation 효과)

  • Kim, Young Joo;Cha, Hwa Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.65-70
    • /
    • 2022
  • In this study, the anti-pigmentation efficacy of Panax vietnamensis (P. vietnamensis), a ginseng native to Vietnam, was confirmed. Melanin synthesis was repressed by ethanolic extracts of P. vietnamensis in B16F10 cells, melanocytes originated from mouse. At 250 ㎍/mL ethanolic extracts of P. vietnamensis, melanin contents were repressed by 64.04% compared to the control group. In addition, ethanolic extracts of P. vietnamensis downregulated tyrosinase activity and expression to 53.34% and 59.39%, respectively. As shown our result, ethanolic extracts of P. vietnamensis blocks α-MSH-mediated melanogenesis and is valuable whitening ingredients in cosmetics.

Synthesis and de-pigmentation effect of phenolic glucoconjugates

  • Kim, Ki-Ho;Kim, Ki-Soo;Lee, Jae-Soeb;Ko, Kang-Il;Lee, Soo-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.99-109
    • /
    • 2001
  • Novel glucoconjugates phenolic moiety, 3-(methoxycarbonyl)-4-(hydroxyphenyl)-$\beta$-D-glucopyranoside(4), 3-(methoxyacetyl)-4-(hydroxyphenyl)-$\beta$-D-glucopyranoside(7), 4-(hydroxyphenyl)-$\beta$-D-ribofuranoside(11), were synthesized. In order to investigate their depigmentation effect, inhibitory activity against mushroom tyrosinase and inhibitory activity of melanin synthesis in B16 melanoma cell were evaluated in vitro. Compound 11 showed 92.0$\mu\textrm{g}$/㎖ of tyrosinase inhibitory activity whereas compound 4 and 7 showed very low activity not less than 300$\mu\textrm{g}$/㎖. Inhibitory activities of melanin synthesis in B16 melanoma cell of compound 4, 7, and 11 were 8.7, 15.1, and 36.0%, respectively, at the concentration of 100$\mu\textrm{g}$/㎖. Inhibitory activity of compound 11 was much higher than that of arbutin at the same concentration.

  • PDF

Commelina communis Ledeb Inhibits Melanin Synthesis in Alpha-MSH-stimulated B16F10 Cells (압척초추출물의 Alpha-MSH 유도성 멜라닌합성 억제 효과)

  • Kang, Moon Kyung;Lee, Young Eun;Woo, Won Hong;Mun, Yeun Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.5
    • /
    • pp.506-511
    • /
    • 2014
  • Commelina communis Ledeb is a widely used medication for the treatment of antidiabetic, antioxidant and hypoglycemic agent in Korea. Alpha-melanocyte stimulating hormone (${\alpha}$-MSH) is a major factor to stimulate melanin synthesis in the skin. The purposes of this study was to investigate the inhibitory effects of extract from Commelina communis Ledeb (ECC) on ${\alpha}$-MSH-stimulated melanogenesis in B16F10 cells. ECC suppressed melanin synthesis and intracellular tyrosinase activity in B16F10 cells or ${\alpha}$-MSH-induced B16F10 cells in a dose dependent manner. In study on the melanogenic protein expressions, it had especially influence on expressions of tyrosinase and tyrosinase-related protein (TRP-1). Tyrosinase and TRP-1 expressions were gradually decreased in a dose-dependent. Additionally, the extract also decreased the ${\alpha}$-MSH-induced over-expression of tyrosinase and TRP-1. This results show that the anti-melanogenic activity of ECC is correlated with the suppression of tyrosinase and TRP-1 protein expressions in B16F10 cells.