• 제목/요약/키워드: Mel-Cepstrum

검색결과 65건 처리시간 0.032초

정규화된 Mel-cepstrum을 이용한 숫자음 인식성능 향상에 관한 연구 (An Improved Digit Recognition using Normalized mel-cepstrum)

  • 이기철
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.403-406
    • /
    • 1994
  • 음성은 화자의 상태 및 주변 환경에 따라 그 특징이 다양하게 변화한다. 본 논문에서는 음성신호의 특징 파라미터로 널리 쓰이고 있는 mel-cepstrum에 대해, 단어내에서의 변화를 정규화함으로써 인식성능을 향상시키고자 하였다. mel-cepstrum이란 단어 전체에 대한 mel-cepstrum의 평균 값으로 normalize 시킨 것이다. 한국어 숫자음에 대한 인식 실험결과, 본 논문에서 제안한 정규화된 mel-cepstrum이 정규화되지 않은 mel-cepstrum에 비해 우수한 인식 성능을 나타내었다. 또한 잡음 환경하에서 비교 실험한 결과에서도 상대적으로 우수한 인식률을 보였다.

  • PDF

전화음성에 강인한 문장종속 화자인식에 관한 연구 (On a robust text-dependent speaker identification over telephone channels)

  • 정의상;최홍섭
    • 음성과학
    • /
    • 제2권
    • /
    • pp.57-66
    • /
    • 1997
  • This paper studies the effects of the method, CMS(Cepstral Mean Subtraction), (which compensates for some of the speech distortion. caused by telephone channels), on the performance of the text-dependent speaker identification system. This system is based on the VQ(Vector Quantization) and HMM(Hidden Markov Model) method and chooses the LPC-Cepstrum and Mel-Cepstrum as the feature vectors extracted from the speech data transmitted through telephone channels. Accordingly, we can compare the correct recognition rates of the speaker identification system between the use of LPC-Cepstrum and Mel-Cepstrum. Finally, from the experiment results table, it is found that the Mel-Cepstrum parameter is proven to be superior to the LPC-Cepstrum and that recognition performance improves by about 10% when compensating for telephone channel using the CMS.

  • PDF

멜 켑스트럼 모듈레이션 에너지를 이용한 음성/음악 판별 (Speech/Music Discrimination Using Mel-Cepstrum Modulation Energy)

  • 김봉완;최대림;이용주
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.89-103
    • /
    • 2007
  • In this paper, we introduce mel-cepstrum modulation energy (MCME) for a feature to discriminate speech and music data. MCME is a mel-cepstrum domain extension of modulation energy (ME). MCME is extracted on the time trajectory of Mel-frequency cepstral coefficients, while ME is based on the spectrum. As cepstral coefficients are mutually uncorrelated, we expect the MCME to perform better than the ME. To find out the best modulation frequency for MCME, we perform experiments with 4 Hz to 20 Hz modulation frequency. To show effectiveness of the proposed feature, MCME, we compare the discrimination accuracy with the results obtained from the ME and the cepstral flux.

  • PDF

Selecting Good Speech Features for Recognition

  • Lee, Young-Jik;Hwang, Kyu-Woong
    • ETRI Journal
    • /
    • 제18권1호
    • /
    • pp.29-41
    • /
    • 1996
  • This paper describes a method to select a suitable feature for speech recognition using information theoretic measure. Conventional speech recognition systems heuristically choose a portion of frequency components, cepstrum, mel-cepstrum, energy, and their time differences of speech waveforms as their speech features. However, these systems never have good performance if the selected features are not suitable for speech recognition. Since the recognition rate is the only performance measure of speech recognition system, it is hard to judge how suitable the selected feature is. To solve this problem, it is essential to analyze the feature itself, and measure how good the feature itself is. Good speech features should contain all of the class-related information and as small amount of the class-irrelevant variation as possible. In this paper, we suggest a method to measure the class-related information and the amount of the class-irrelevant variation based on the Shannon's information theory. Using this method, we compare the mel-scaled FFT, cepstrum, mel-cepstrum, and wavelet features of the TIMIT speech data. The result shows that, among these features, the mel-scaled FFT is the best feature for speech recognition based on the proposed measure.

  • PDF

한국어 음성 인식 시스템을 위한 MEL-LPC 분석 방법과 LPC-MEL 분석 방법의 비교 (Comparison of MEL-LPC and LPC-MEL Analysis Method for the Korean Speech Recognition Systems.)

  • 김주곤;김범국;정호열;정현열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.833-836
    • /
    • 2001
  • 본 논문에서는 한국어 음성인식 시스템의 성능 향상을 위해 청각 주파수 분해능을 가진 MEL-LPC Cepstrum을 음소단위의 HMM(Hidden Markov Model)을 기반으로 하는 인식 시스템에 적용하여 그 결과를 비교 검토하였다. 선형예측(LP) 분석 후에 후처리로서 주파수를 왜곡시킨 LPC-MEL 분석이 계산량이 적고 효과적이라 일반적으로 많이 사용되고 있으나 주파수 분해능은 많이 개선되지 않는다. 따라서 본 논문에서는 주파수 분해능을 개선하기 위해, 원 음성신호로부터 직접적으로 멜주파수로 왜곡시킨 후 선형 예측 분석을 수행하는 MEL-LPC 분석방법을 이용한 음소기반의 화자 독립 음성인식 시스템을 구성하여 기존의 LPC-MEL 분석방법과 비교실험을 통하여 MEL-LPC 분석방법의 유효성을 검토하였다. 실험에 사용한 음성 데이터베이스는 음소 및 단어 인식실험에서는 ETRI 445단어 DB, 연속 숫자음인식 실험에서는 KLE 4연속 숫자음 DB를 사용하였다. 화자 독립 음소인식 실험의 경우, 묵음을 제외한 47개의 유사 음소에 대하여 4상태 3출력의 Left-to-Right 모델을이용하였다. 단어 및 연속 숫자음 인식 실험의 경우, 유한상태 네트워크에 의한 OPDP법을 이용하였다. 화자 독립 음소, 단어 및 4연속 숫자음 인식 실험결과, 기존의 LPC-MEL Cepstrum을 사용한 경우보다 MEL-LPC Cepstum을 사용한 경우가 더 높은 인식률을 나타내어 한국어 음성인식 시스템에서 MEL-LPC 분석방법의 유효성을 확인할 수 있었다.

  • PDF

필터 뱅크 최적화에 의한 멜켑스트럼의 성능 향상 (Performance Improvement of Mel-Cepstrum Through Optimzing Filter Banks)

  • 현동훈;이철희
    • 한국음향학회지
    • /
    • 제18권1호
    • /
    • pp.78-85
    • /
    • 1999
  • 본 논문에서는 현재 음성 인식에서 널리 사용되고 있는 멜켑스트럼의 성능 향상 방안을 제안한다. 일반적으로 멜켑스트럼은 인접한 필터간의 중심 간격과 필터의 대역폭이 일정한 critical band 필터들을 사용하여 구한다. 그러나 필터의 특성에 따라 멜켑스트럼의 값들이 달라지게 되고, 이에 따라 인식 성능도 변하게 된다. 본 논문에서는 삼각형과 사각형 모양의 critical band 필터를 사용하여 인접한 필터간의 중심 간격과 필터의 대역폭을 각각 변화시키면서 멜켑스트럼을 구하고 이에 따른 인식 성능을 분석한다. 또한 최적화 알고리즘인 simplex 방법을 사용하여 필터의 중심 주파수와 대역폭을 각각 변화시키면서 최적의 성능을 나타내는 필터를 구하는 방법을 제안한다. 인식 알고리즘으로 DTW (dynamic time warping)를 사용하고, 남자 10명과 여자 10명이 발음한 한국어 숫자음을 인식 대상으로 하여 실험을 수행하였다. 사각형 모양의 필터가 삼각형 모양의 필터 보다 우수한 성능을 보여 주었고 제안된 방법으로 최적화된 필터를 사용하여 구한 멜켑스트럼은 기존의 critical band 필터를 사용하는 것보다 향상된 인식 성능을 나타내었다.

  • PDF

한국어 숫자음 인식을 위한 이산분포 HMM과 연속분포 HMM의 성능 비교 연구 (A Comparison of Discrete and Continuous Hidden Markov Models for Korean Digit Recognition)

  • 홍형진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.157-160
    • /
    • 1994
  • 본 논문에서는 한국어 숫자음 인식에 대한 이산분포 HMM과 연속분포 HMM의 인식 성능을 비교하였다. 일반적으로 연속분포 HMM은 많은 계산량이 필요하고, 학습시 초기값이 매우 민감하다는 단점이 있지만, 이산분포 HMM의 VQ로 인한 왜곡을 제거함으로써 인식률을 향상시킬 수 있다. 여기서는 성능비교를 위해서 mel-cepstrum의 분석차수, 이산분포 HMM의 codebook 크기, 연속분포 HMM의 miture 개수등에 따른 인식성능을 비교하였다. 실험 결과 이산분포 HMM에서는 mel-cepstrum 벡터가 14차이고, codebook 크기가 64일 때 가장 좋은 성능을 나타냈으며, 연속부포 HMM에서는 mel-cepstrum 벡터가 16차이고 miture가 3개일 때 가장 좋은 결과를 얻을 수 있었다. 특히 학습 데이터의 양이 적은 경우에는 연속분포 HMM이 이산분포 HMM보다 더 좋은 인식률을 나타내었다.

  • PDF

음성 신호의 의사 켑스트럼 표현 및 음성 인식에의 응용 (Pseudo-Cepstral Representation of Speech Signal and Its Application to Speech Recognition)

  • 김홍국;이황수
    • The Journal of the Acoustical Society of Korea
    • /
    • 제13권1E호
    • /
    • pp.71-81
    • /
    • 1994
  • 본 논문에서는 line spectrum pair (LSP)의 의사 켑스트럼 표현을 제안하고 이 의사 켑스트럼에 켑스트럼 lifter를 적용하여 얻은 특징 벡타를 이용하는 음성 인식 시스템의 성능을 평가한다. 의사 켑스트럼 표현은 LSP와 LPC 켑스터럼 사이의 관계로부터 근사적으로 유도된다. 이때 음성 인식 시스템의 성능을 더욱 향상 시키기 위하여 root-power-sums lifter, general exponential lifter (GEL), 그리고 bandpass lifter 등과 같은 켑스터럼 liter가 의사 켑스터럼에 적용된다. 또한 mel 주파수로의 변환도 행해진다. 인식 결험 결과, GEL로 liftering된 mel 주파수 의사 켑스터럼이 가장 좋은 성능을 나타내며, LSP에 비해 5~6dB정도의 신도대잡음비의 개선을 얻을 수 있다.

  • PDF

오디오 인덱싱을 위한 음성/음악 분류 특징 비교 (A Comparison of Speech/Music Discrimination Features for Audio Indexing)

  • 이경록;서봉수;김진영
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.10-15
    • /
    • 2001
  • 본 논문에서 우리는 음향신호에서 음성과 음악을 분류하는 음성/음악 분류실험에 사용되는 특징들간의 상호조합을 비교하였다. 음향신호는 3가지 (음성, 음악, 음성+음악)와 2가지 (음성, 음악)로 분류하였다. 실험은 멜캡스트럼, 에너지, 영교차를 특징으로 사용하였고, 음성/음악 분류성능이 가장 좋은 특징간 상호조합을 모색하였다. 분류 알고리즘으로는 Gaussian Mixture Model (GMM)을 이용하였으며, GMM에 의한 데이터 모델링 전에 각기 다른 특징들을 하나의 특징공간에서 결합하였다. 실험결과 3가지 분류기준 적용시에는 멜캡스트럼, 영교차 조합이 가장 좋은 결과 (음성: 95.1%, 음악: 61.9%, 음성+음악: 55.5%)를 보였고, 2가지 분류기준 적용시에는 멜캡스트럼, 에너지 조합과 멜캡스트럼, 에너지, 영교차 조합이 가장 좋은 결과 (음성: 98.9%, 음악: 100%)를 보였다.

  • PDF

음성 특징의 효율성 (EFFICIENCY OF SPEECH FEATURES)

  • 황규웅
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.225-227
    • /
    • 1995
  • This paper compared waveform, cepstrum, and spline wavelet features with nonlinear discriminant analysis. This measure shows efficiency of speech parametrization better than old linear separability criteria and can be used to measure the efficiency of each layer of certain system. Spline wavelet transform has larger gap among classes and cepstrum is clustered better than the spline wavelet feature. Both features do not have good property for classification and we will compare Gabor wavelet transform, Mel cepstrum, delta cepstrum, etc.

  • PDF