Proceedings of the Acoustical Society of Korea Conference (한국음향학회:학술대회논문집)
- 1994.06c
- /
- Pages.157-160
- /
- 1994
A Comparison of Discrete and Continuous Hidden Markov Models for Korean Digit Recognition
한국어 숫자음 인식을 위한 이산분포 HMM과 연속분포 HMM의 성능 비교 연구
Abstract
본 논문에서는 한국어 숫자음 인식에 대한 이산분포 HMM과 연속분포 HMM의 인식 성능을 비교하였다. 일반적으로 연속분포 HMM은 많은 계산량이 필요하고, 학습시 초기값이 매우 민감하다는 단점이 있지만, 이산분포 HMM의 VQ로 인한 왜곡을 제거함으로써 인식률을 향상시킬 수 있다. 여기서는 성능비교를 위해서 mel-cepstrum의 분석차수, 이산분포 HMM의 codebook 크기, 연속분포 HMM의 miture 개수등에 따른 인식성능을 비교하였다. 실험 결과 이산분포 HMM에서는 mel-cepstrum 벡터가 14차이고, codebook 크기가 64일 때 가장 좋은 성능을 나타냈으며, 연속부포 HMM에서는 mel-cepstrum 벡터가 16차이고 miture가 3개일 때 가장 좋은 결과를 얻을 수 있었다. 특히 학습 데이터의 양이 적은 경우에는 연속분포 HMM이 이산분포 HMM보다 더 좋은 인식률을 나타내었다.
Keywords