• Title/Summary/Keyword: Medium reactor

Search Result 209, Processing Time 0.024 seconds

The Effect of Oxygen Supply on the Production of Citric Acid from Encapsulated Aspergillus niger (산소공급이 캡슐고정화 Aspergillus niger의 구연산 생산에 미치는 영향)

  • Park, Joong-Kon;Jeong, Geung-Sik
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.672-676
    • /
    • 1999
  • Encapsulated Aspergillus niger was prepared in order to inspect the effect of oxygen supply on the production of citric acid. A. niger cells which had been immobilized in the calcium alginate capsule grew and mycellia penetrated through the capsule membrane after two days of cultivation and covered over all of the capsule after eight days. The mycellia became loose when the nitrogen source was sufficient of oxygen was deficient. The larger amount of encapsulated cells were put into a given growth medium, the smaller quantity of citric acid was produced. The increase of volumetric oxygen transfer coefficient from 1.8 $hr^-$ to 2.55 $hr^-$ in the flask culture accelerated cell growth rate but did not influence the production of citric acid. The high oxygen supply rate($k_La:\;150\;hr^-$) in the concentric air lift reactor hastened the growth of cells and hindered the production of the citric acid. The reduction of nitrogen source level in the growth medium in the concentric air lift reactor increased citric acid production by 40 percent of that of flask cultivation and the culture period was shortened by 3 days. The variation of the geometry of the concentric air lift reactor did not influence the growth rate of encapsulated cells and production rate of citric acid.

  • PDF

Numerical Analysis of the Effect of Hole Size Change in Lower-Support-Structure-Bottom Plate on the Reactor Core-Inlet Flow-Distribution (하부지지구조물 바닥판 구멍크기 변경이 원자로 노심 입구 유량분포에 미치는 영향에 관한 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.905-911
    • /
    • 2015
  • In this study, to examine the effect of a hole size change(smaller hole diameter) in the outer region of the lower-support-structure-bottom plate(LSSBP) on the reactor core-inlet flow-distribution, simulations were conducted with the commercial CFD software, ANSYS CFX R.15. The predicted results were compared with those of the original LSSBP. Through these comparisons, it was concluded that a more uniform distribution of the mass flow rate at the core-inlet plane could be obtained by reducing the hole size in the outer region of the LSSBP. Therefore, from the nuclear regulatory perspective, design change of the hole pattern in the outer region of the LSSBP may be desirable in terms of improving both the mechanical integrity of the fuel assembly and the core thermal margin.

Effects of Operational Condition on N2O Production from Biological Nitrogen Removal Process (생물학적 질소제거시 운전조건의 변화가 N2O 발생에 미치는 영향)

  • Jang, Hyun-Sup;Kim, Tae-Hyeong;Lee, Myoung-Joo;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2009
  • The objectives of this research were focused on the effects of various operating parameters on nitrous oxide emission such as C/N ratio, ammonia concentration and HRT in the hybrid and suspension reactors. With the decreasing of C/N ratios, $N_2O$ emission rates in the both processes were increased because organic carbon source for denitrification was depleted. In case of biofilm reactor operated using medium, $N_2O$ release from the nitrification was not affected by the variation of ammonia concentration. But in the suspension reactor, $N_2O$ production from the nitrification was rapidly increased with the increase of ammonia. Nitrite accumulation caused by undesirable nitrification conditions could be a important reason for the increase in the $N_2O$ production from the aerobic reactor. And rapid increase in $N_2O$ production was reflected by the decrease of HRT, similar to the results observed in the results of ammonia loading changes. So it could be said that it is very important to put in consideration both its optimum conditions for wastewater treatment efficiency and suitable conditions for $N_2O$ diminish, simultaneously, in order to development an eco-friendly and advanced wastewater treatment, especially in BNR process.

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.

Development of a Diagnosis Algorithm of Influent Loading Levels Using Pattern Matching Method in Sequencing Batch Reactor (SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 유입수 부하수준 진단 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Kim, Hyo-Su;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • DO, ORP and pH values measured during SBR operation can provide information about removal reaction of organic contaminants and nutrient materials in the reactor. It is already generalized control strategy to control reaction phase time using their special patterns indicating the end of the removal reactions. However, those informations are limited to point out the end time of oxidative reaction in the aerobic phase or reductive reaction in the anoxic phase without giving quantitative value of influent loading level. In this research, a diagnosis algorithm which can estimate the loading level of carbon and ammonia as high, medium and low was developed using the basic measurements like DO, ORP, and pH. It will be possible to know the level of influent loading rate from those online measurements without experimental analysis.

Vinegar Production by Acetobacter aceti Cell Immobilized in Calcium Alginate (Calcium Alginate로 고정화된 Acetobacter aceti에 의한 식초생산)

  • 유익제;박기문유연우최춘언
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 1990
  • This study is to investigate for obtaining the operating conditions of continuous vinegar production using fluidized bed reactor by Acetobacter aceti cell immobilized in Ca-alginate gel. The optimum conditions obtaining by batch fermentation using fluidized bed reactor were as follows; The fermentation temperature and aeration rate were 3$0^{\circ}C$ and 1.0VVM and the initial concentration of ethanol and acetic acid in medium were 33g/l and 27g/l respectively. The amount of bead used was 25%(w/v). The overall acetic acid productivities of batch fermentations by free cell and immobilized cell were 0.31g/l-hr and 0.48g/l-hr, respectively, at the final acetic acid concentration of 50g/l. In the continuous vinegar production using fluidized bed reactor by immobilized cell under optimum conditions, it was possible to produce 23g/l acetic acid continuously up to 90 days with maximum acetic acid productivity of 2.76g/l-hr at dilution rate 0.12hr-1.

  • PDF

Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions

  • Lu, Yonggang;Wang, Xiuli;Fu, Qiang;Zhao, Yuanyuan;Zhu, Rongsheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2207-2220
    • /
    • 2021
  • Lead alloy is used as coolant in Lead-based cooled Fast Reactor (LFR). The natural characteristics of lead alloy are combined with the simple structural design of LFR. This constitutes the inherent safety characteristics of LFR. The main work of this paper is to take the main coolant pump (MCP) in the lead-cooled fast reactor (LFR) as the research object, and to study the flow pattern distribution of the internal flow field under the reverse rotation pump condition, the reverse rotation positive-flow braking condition and the reverse rotation negative-flow braking condition. In this paper, the double-outlet volute type and the space guide vane are selected as the potential designs of the CLEAR-I MCP. In this paper, the CFD method is used to study the potential reverse accident of the MCP. It is found that the highest flow velocity in the impeller appears at the impeller outlet, and the Q-H curves of the two design programs basically coincide. The space guide vane type MCP has better hydraulic performance under the reverse rotation positive-flow condition, the Q-H curves of the two designs gradually separate with increasing flow rate, and the maximum flow velocity inside the space guide vane type MCP is obviously lower than that of the double-outlet volute type. For the reverse rotation test of MCP, only the condition of the forward rotating pump of the main coolant pump is tested and verified. For the simulation of the MCP in LBE medium, it proved that the turbulence model and basic settings selected in the simulation are reliable.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Bioalcohol Production with Microalgae, Microcystis aeruginosa (미세조류 Microcystis aeruginosa로부터 바이오 알콜의 생산)

  • Kim, Jong Deog;Chae, Go Woon;Seo, Hyo Jin;Chaudhary, Narendra;Yoon, Yang Ho;Shin, Tai Sun;Kim, Min Yong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.335-340
    • /
    • 2012
  • The microalgae, Microcystis aeruginosa are able to proliferate in a wide range of freshwater ecosystem. M. aeruginosa was cultivated in 25 L and 240 L race-way reactor containing modified medium with added urea 0.2 g/L, increased $Fe^{+2}$, and decreased $Ca^{+2}$ion compared to BG11 medium. Sugar contents of M. aeruginosa grown in BG11 medium, and modified medium were 120 mg/mL and 140 mg/mL respectively. Fermentation was conducted with the extract of M. aeruginosa at $30^{\circ}C$ for 30 h, using Saccharomyces cerevisiae (Sc), Pichia stipitis (Ps), Zymomonas mobilis (Zm), and mixed-culture of these strains (Sc + Ps + Zm). Pichia stipitis (0.7%) was found to be more suitable for producing bioalcohol from M. aeruginosa extract than other strains of Saccharomyces cerevisiae (0.45%) and Zymomonas mobilis (0.61%), while mixed-cultured of these strains showed higest productivity by 1.75%. Biomass of M. aeruginosa contains the potency to be the most renewable resource for bioalcohol fermentation.

A Study on Plant Effects on Decontamination of Polluted Indoor Air with Formaldehyde (포름알데히드로 오염된 실내공기의 정화에 미치는 식물효과에 관한 연구)

  • Park, Soyoung;Kim, Jeoung;Jang, Young-Kee;Sung, Kijune
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.147-155
    • /
    • 2005
  • This study was designed to investigate the effect of plant as a botanical air purification on the indoor pollution by formaldehyde. Three indoor plants such as Dracaena marhginata, Spathiphyllum and Dracaena reflexa, were placed in the artificially contaminated reactor under laboratory condition. Both plant and soil effects on removal of formaldehyde from contaminated indoor air were observed. Reductions in the formaldehyde levels appeared to have been associated with soil medium factors as well as plant factors. The effect of soil on formaldehyde reduction was high in the early stage of the experiment and the results suggest that sorption could be more important factor than microbial degradation in the initial dissipation of contaminants in the soil. It was suggested that the effect of plant on formaldehyde reduction might be related to the plant species, total leaf surface area of plant, degree of contribution of soil medium, and exposed concentration level. The results of this study showed that air purification using plants is an effective means of reduction on indoor formaldehyde level, though, utilization of soil media with high sorption capacity and/or supplementary purifying aids were also suggested when the source is continuous or exposed concentration level is high.