• 제목/요약/키워드: Medical phantom

검색결과 1,081건 처리시간 0.025초

의료용 선형가속기 출력측정용 듀얼윈도우 팬텀 개발 (Development of Dual-Window Phantom for Output Measurement of Medical Linacs)

  • 정동혁;곽동원;문영민;강영록;김정기;이만우
    • 한국의학물리학회지:의학물리
    • /
    • 제23권4호
    • /
    • pp.229-233
    • /
    • 2012
  • 광자선 출력측정시 업무 효율을 높이기 위한 소형 물팬톰(듀얼윈도우 팬톰)을 개발하였다. 이 팬톰은 고에너지 광자선의 출력측정뿐만아니라 선질지표의 결정에 적합하다. 이 팬톰은 두개의 창을 가지고 있으며 독립된 두 축에 의해 회전할 수 있도록 제작되어있다. 이 때 두 축은 전리함 이동 없이 조직팬톰선량비와 깊이선량율비를 결정하기 위한 것이다. 코발트조사기와 선형가속기의 고에너지 광자선을 이용하여 팬톰을 평가하였으며, 기준값과 비교할 때 Co-60의 경우 0.2% 그리고 가속기 x-선에 대해 1.4% 이내로 일치하였다. 이 팬톰은 발생 가능한 인적오차를 방지할 수 있기 때문에 일상의 출력측정에 매우 실용적이라고 본다.

3차원 입체정위 유방생검술의 정확도 및 정밀도 평가 (Evaluation of the Accuracy and Precision Three-Dimensional Stereotactic Breast Biopsy)

  • 이미화
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제38권3호
    • /
    • pp.213-220
    • /
    • 2015
  • 본 연구는 3차원 입체정위 유방생검술의 정확도를 알아보고, 심부침생검을 이용하여 Stereotactic biopsy과 Sonoguided biopsy의 정확도와 정밀도를 평가하고자 한다. Stereotactic QC phantom을 이용하여 실제 5개의 target 위치로 3D sterotactic machine의 정확도를 측정하고, CT장비로 Scan하여 실측을 구해 X, Y, Z의 길이의 정밀도를 비교한다. 유방조직과 유사하게 제작한 Agar power phantom을 이용하여 5개의 각기 다른 needle tip Target을 통해 3D sterotactic machine과 2D ultrasound machine의 정확도를 비교하고, Z축을 장비별로 실측하여 정밀도와 신뢰도를 비교하며, 6개의 모조병소 Target을 심어놓은 Medical application phantom으로 표적하여 육안검사와 Specimen검사를 통해 정확도를 확인하였다. Stereotactic QC phantom으로 측정한 3D sterotactic machine의 정확도는 100%였으며, CT와 비교한 정밀도는 X, Y, Z축이 모두 p>0.05로 나타났다. Agar powder phantom으로 측정한 두 장비의 정확도는 100%의 정확도를 보였으며, CT와 두 장비 사이에는 p > 0.05로 차이가 없었다. 그러나 2명의 방사선사가 측정한 신뢰도분석에서 3D sterotactic machine은 ICC가 0.954였고, 2D ultrasound machine은 0.785로 2D ultrasound machine이 술자에 따라 차이가 있었다. Medical application phantom의 실험에서 3D sterotactic machine은 Sliced boneless ham을, 2D ultrasound machine은 small chalk powder group를 찾을 수 없었다. Phantom을 이용한 3차원 입체정위 유방생검술의 정확성은 우수하게 나타났고, 인체조직과 비슷한 Agar powder phantom과 유방 조직과 비슷한 Medical application phantom을 이용하여 Stereotactic biopsy과 Sonoguided biopsy의 정확도와 정밀도 모두 우수하게 나타났다. 또한 Medical application phantom의 심부침생검의 정확성 평가에서 각 검사에 따라 생검 표본이 병소의 형태에 따라 상이하게 채취되었고, 3차원 입체정위 유방생검술의 재현성이 유방 초음파검사보다 술자의 영향없이 우수하였다.

MR-based Partial Volume Correction for $^{18}$F-PET Data Using Hoffman Brain Phantom

  • Kim, D. H.;Kim, H. J.;H. K. Jeong;H. K. Son;W. S. Kang;H. Jung;S. I. Hong;M. Yun;Lee, J. D.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.322-323
    • /
    • 2002
  • Partial volume averaging effect of PET data influences on the accuracy of quantitative measurements of regional brain metabolism because spatial resolution of PET is limited. The purpose of this study was to evaluate the accuracy of partial volume correction carried out on $^{18}$ F-PET images using Hoffman brain phantom. $^{18}$ F-PET Hoffman phantom images were co-registered to MR slices of the same phantom. All the MR slices of the phantom were then segmented to be binary images. Each of these binary images was convolved in 2 dimensions with the spatial resolution of the PET. The original PET images were then divided by the smoothed binary images in slice-by-slice, voxel-by-voxel basis resulting in larger PET image volume in size. This enlarged partial volume corrected PET image volume was multiplied by original binary image volume to exclude extracortical region. The evaluation of partial volume corrected PET image volume was performed by region of interests (ROI) analysis applying ROIs, which were drawn on cortical regions of the original MR image slices, to corrected and original PET image volume. From the ROI analysis, range of regional mean values increases of partial volume corrected PET images was 4 to 14%, and average increase for all the ROIs was about 10% in this phantom study. Hoffman brain phantom study was useful for the objective evaluation of the partial volume correction method. This MR-based correction method would be applicable to patients in the. quantitative analysis of FDG-PET studies.

  • PDF

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

An Intercomparison of Counting Efficiency and the Performance of Two Whole-Body Counters According to the Type of Phantom

  • Pak, Minjung;Yoo, Jaeryong;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.274-281
    • /
    • 2016
  • Background: Whole-body counters are widely used to evaluate internal contamination of the internal presence of gamma-emitting radionuclides. In internal dosimetry, it is a basic requirement that quality control procedures be applied to verify the reliability of the measured results. The implementation of intercomparison programs plays an important role in quality control, and the accuracy of the calibration and the reliability of the results should be verified through intercomparison. In this study, we evaluated the reliability of 2 whole-body counting systems using 2 calibration methods. Materials and Methods: In this study, 2 whole-body counters were calibrated using a reference male bottle manikin absorption (BOMAB) phantom and a Radiation Management Corporation (RMC-II) phantom. The reliability of the whole-body counting systems was evaluated by performing an intercomparison with International Atomic Energy Agencyto assess counting efficiency according to the type of the phantom. Results and Discussion: In the analysis of counting efficiency using the BOMAB phantom, the performance criteria of the counters were satisfied. The relative bias of activity for all radionuclides was -0.16 to 0.01 in the Fastscan and -0.01 to 0.03 in the Accuscan. However, when counting efficiency was analyzed using the RMC- II phantom, the relative bias of $^{241}Am$ activity was -0.49 in the Fastscan and 0.55 in the Accuscan, indicating that its performance criteria was not satisfactory. Conclusion: The intercomparison process demonstrated the reliability of whole-body counting systems calibrated with a BOMAB phantom. However, when the RMC-II phantom was used, the accuracy of measurements decreased for low-energy nuclides. Therefore, it appears that the RMC-II phantom should only be used for efficiency calibration for high-energy nuclides. Moreover, a novel phantom capable of matching the efficiency of the BOMAB phantom in low-energy nuclides should be developed.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.

자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가 (The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing)

  • 이기백;남기창;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권4호
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.

Comparison of Temperature Distribution in Agar Phantom and Gel Bolus Phantom by Radiofrequency Hyperthermia

  • Jung, Dong Kyung;Kim, Sung Kyu;Lee, Joon Ha;Youn, Sang Mo;Kim, Hyung Dong;Oh, Se An;Park, Jae Won;Yea, Ji Won
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.224-231
    • /
    • 2016
  • The usefulness of Gel Bolus phantom was investigated by comparing the temperature distribution characteristic of the agar phantom produced to investigate the dose distribution characteristic of radiofrequency hyperthermia device with that of the Gel Bolus phantom under conditions similar to those of an agar phantom that can continuously carry out temperature measurement. The temperatures of the agar phantom and the Gel Bolus phantom were raised to $36.5{\pm}3^{\circ}C$ and a temperature sensing was inserted at depths of 5, 10, and 15 cm from the phantom central axis. The temperature increase rate and the coefficient of determination were analyzed while applying output powers of 100 W and 150 W, respectively, at intervals of 1 min for 60 min under conditions where the indoor temperature was in the range $24.5{\sim}27.5^{\circ}C$, humidity was 35~40%, internal cooling temperature of the electrode was $20^{\circ}C$, size of the upper electrode was 250 mm, and the size of the lower electrode was 250 mm. The coefficients of determination of 150 W output power at the depth point of 5 cm from the central axis of the phantom were analyzed to be 0.9946 and 0.9926 in the agar and Gel Bolus phantoms, respectively; moreover, the temperature change equation of the agar and Gel Bolus phantoms with time can be expressed as follows in the state the phantom temperature is raised to $36^{\circ}C:Y(G)$ is equation of Gel Bolus phantoms (in 5 cm depth) applying output power of 150 W. Y(G)=0.157X+36. It can be seen that if the temperature is measured in this case, the Gel Bolus phantom value can be converted to the measured value of the agar phantom. As a result of comparing the temperature distribution characteristics of the agar phantom of a human-body-equivalent material with those of the Gel Bolus phantom that can be continuously used, the usefulness of Gel Bolus phantom was exhibited.

3D 프린팅 팬텀의 섬광카메라 적용 평가 (Evaluation of Scintillation Camera Applications of 3D Printing Phantom)

  • 박훈희;이주영;김지현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.343-350
    • /
    • 2021
  • 3D printing technology is an additive manufacturing technology produced through 3D scanning or modeling method. This technology can be produced in a short time without mold, which has recently been applied in earnest in various fields. In the medical field, 3D printing technology is used in various fields of radiology and radiation therapy, but related research is insufficient in the field of nuclear medicine. In this study, we compare the characteristics of traditional nuclear medicine phantom with 3D printing technology and evaluate its applicability in clinical trials. We manufactured the same size phantom of poly methyl meta acrylate(PMMA) and acrylonitrile butadiene styrene(ABS) based on the aluminum step wedge. We used BrightView XCT(Philips Health Care, Cleveland, USA) SPECT/CT. We acquired 60 min list mode for Aluminum, PMMA and ABS phantoms using Rectangular Flood Phantom (Biodex, New York, USA) 99mTcO4 3 mCi(111 MBq), 6 mCi (222MBq) and 57Co Flood phantom(adq, New Hampshire, USA). For the analysis of acquired images, the region of interest(ROI) were drawn and evaluated step by step for each phantom. Depending on the type of radioisotope and radiation dose, the counts of the ABS phantom was similar to that of the PMMA phantom. And as the step thickness increased, the counts decreased linearly. When comparing the linear attenuation coefficient of Aluminum, PMMA and ABS phantom, the linear attenuation coefficient of the aluminium phantom was higher than that of the others, and the PMMA and ABS phantom had similar the linear attenuation coefficient. Based on ABS phantom manufactured by 3D printing technology, as the thickness of the PMMA phantom increased, the counts and linear attenuation coefficient decreased linearly. It has been confirmed that ABS phantom is applicable in the clinical field of nuclear medicine. If the calibration factor is applied through further research, it is believed that practical application will be possible.