• Title/Summary/Keyword: Medical phantom

Search Result 1,091, Processing Time 0.034 seconds

Adaptive Image Rescaling for Weakly Contrast-Enhanced Lesions in Dedicated Breast CT: A Phantom Study (약하게 조영증강된 병변의 유방 전용 CT 영상의 대조도 개선을 위한 적응적 영상 재조정 방법: 팬텀 연구)

  • Bitbyeol Kim;Ho Kyung Kim;Jinsung Kim;Yongkan Ki;Ji Hyeon Joo;Hosang Jeon;Dahl Park;Wontaek Kim;Jiho Nam;Dong Hyeon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1477-1492
    • /
    • 2021
  • Purpose Dedicated breast CT is an emerging volumetric X-ray imaging modality for diagnosis that does not require any painful breast compression. To improve the detection rate of weakly enhanced lesions, an adaptive image rescaling (AIR) technique was proposed. Materials and Methods Two disks containing five identical holes and five holes of different diameters were scanned using 60/100 kVp to obtain single-energy CT (SECT), dual-energy CT (DECT), and AIR images. A piece of pork was also scanned as a subclinical trial. The image quality was evaluated using image contrast and contrast-to-noise ratio (CNR). The difference of imaging performances was confirmed using student's t test. Results Total mean image contrast of AIR (0.70) reached 74.5% of that of DECT (0.94) and was higher than that of SECT (0.22) by 318.2%. Total mean CNR of AIR (5.08) was 35.5% of that of SECT (14.30) and was higher than that of DECT (2.28) by 222.8%. A similar trend was observed in the subclinical study. Conclusion The results demonstrated superior image contrast of AIR over SECT, and its higher overall image quality compared to DECT with half the exposure. Therefore, AIR seems to have the potential to improve the detectability of lesions with dedicated breast CT.

Validity of Clinically Used Tray Transmission Factor (임상적으로 쓰이는 차폐선반투과율의 타당성에 관한 연구)

  • 윤형근
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.218-224
    • /
    • 2003
  • Purpose:By evaluating the dependence of the tray transmission factor (tray factor) on collimator setting and tray thickness, we determined the validity of the clinically used single tray factor for standard radiation field size (10${\times}$10 $\textrm{cm}^2$). Methods and Materials:For each X ray energies (6 and 10 MV), outputs were measured by using 5 steps of tray thickness (0, 6, 8, 10, 12 mm) and 7 steps of radiation field size (5${\times}$5, 10${\times}$10, 15${\times}$15, 20${\times}$20, 25${\times}$25, 30${\times}$30, 35${\times}$35 $\textrm{cm}^2$) at 10 cm phantom depth. Outputs were measured in both 'with tray' and 'without tray' conditions by using radiation with the same monitor units, and the tray factors were determined by the ratios of the two outputs. To evaluate the validity of a single tray factor obtained for standard radiation field, we analyzed the pattern of the field sizes in cases treated at our hospital in 2002. Results : In the 6 MV X-ray, the increases in the tray factor between the standard field (l0${\times}$10 $\textrm{cm}^2$) and the largest field (35${\times}$35 $\textrm{cm}^2$) were 0.517%, 0.835%, 1.058%, 1.066% in 6, 8, 10, and 12 mm thickness tray, respectively. In the 10 MV X-ray, the increases in the fray factor between the standard field (10${\times}$10 $\textrm{cm}^2$) and the largest field (35${\times}$35 $\textrm{cm}^2$) were 0.517%, 0.836%, 1.058%, 1.066% in 6, 8, 10, 12 mm thickness tray, respectively. In a major portion of clinical cases, when the field size was smaller than 20${\times}$20 $\textrm{cm}^2$, the tray factor was in good agreement with the standard tray factor. However, in cases where the field sizes were 30${\times}$30 $\textrm{cm}^2$ and 35${\times}$35 $\textrm{cm}^2$, the error could exceed 1.0%. Conclusion:The tray factor increased with increasing field size or decreasing tray thickness. The difference of tray factor between the small field and the large field increased with increasing tray thickness. Furthermore, the standard tray factor was valid in most clinical cases except for when the field size was greater than 30${\times}$30 $\textrm{cm}^2$, wherein the error could exceed 1.0%.

  • PDF

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT (SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화)

  • Kim, Ji-Hyeon;Lee, Jooyoung;Son, Hyeon-Soo;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.15-24
    • /
    • 2021
  • Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

Analysis of Image Distortion on Magnetic Resonance Diffusion Weighted Imaging

  • Cho, Ah Rang;Lee, Hae Kag;Yoo, Heung Joon;Park, Cheol-Soo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • The purpose of this study is to improve diagnostic efficiency of clinical study by setting up guidelines for more precise examination with a comparative analysis of signal intensity and image distortion depending on the location of X axial of object when performing magnetic resonance diffusion weighted imaging (MR DWI) examination. We arranged the self-produced phantom with a 45 mm of interval from the core of 44 regent bottles that have a 16 mm of external diameter and 55 mm of height, and were placed in 4 rows and 11 columns in an acrylic box. We also filled up water and margarine to portrait the fat. We used 3T Skyra and 18 Channel Body array coil. We also obtained the coronal image with the direction of RL (right to left) by using scan slice thinkness 3 mm, slice gap: 0mm, field of view (FOV): $450{\times}450mm^2$, repetition time (TR): 5000 ms, echo time (TE): 73/118 ms, Matrix: $126{\times}126$, slice number: 15, scan time: 9 min 45sec, number of excitations (NEX): 3, phase encoding as a diffusion-weighted imaging parameter. In order to scan, we set b-value to $0s/mm^2$, $400s/mm^2$, and $1,400s/mm^2$, and obtained T2 fat saturation image. Then we did a comparative analysis on the differences between image distortion and signal intensity depending on the location of X axial based on iso-center of patient's table. We used "Image J" as a comparative analysis programme, and used SPSS v18.0 as a statistic programme. There was not much difference between image distortion and signal intensity on fat and water from T2 fat saturation image. But, the average value depends on the location of X axial was statistically significant (p < 0.05). From DWI image, when b-value was 0 and 400, there was no significant difference up to $2^{nd}$ columns right to left from the core of patient's table, however, there was a decline in signal intensity and image distortion from the $3^{rd}$ columns and they started to decrease rapidly at the $4^{th}$ columns. When b-value was 1,400, there was not much difference between the $1^{st}$ row right to left from the core of patient's table, however, image distortion started to appear from the $2^{nd}$ columns with no change in signal intensity, the signal was getting decreased from the $3^{rd}$ columns, and both signal intensity and image distortion started to get decreased rapidly. At this moment, the reagent bottles from outside out of 11 reagent bottles were not verified from the image, and only 9 reagent bottles were verified. However, it was not possible to verify anything from the $5^{th}$ columns. But, the average value depends on the location of X axial was statistically significant. On T2 FS image, there was a significant decline in image distortion and signal intensity over 180mm from the core of patient's table. On diffusion-weighted image, there was a significant decline in image distortion and signal intensity over 90 mm, and they became unverifiable over 180 mm. Therefore, we should make an image that has a diagnostic value from examinations that are hard to locate patient's position.

Evaluation of Effective Dose in Dental Radiography (치과 방사선 검사에서 유효선량 평가)

  • Han, Su-Chul;Lee, Bo-Ram;Shin, Gwi-Soon;Choi, Jong-Hak;Park, Hyok;Park, Chang-Seo;Chang, Kye-Yong;Kim, Bo-Ram;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Along with the developments of science technology, up-to-date medical radiation equipments are introduced. Those equipments has brought many progresses in diagnosing patients not only in the quantitative aspects but in the qualitative ones. Especially, in the case of dental radiography, patients can be exposed more than CT, cone beam computed tomography (CBCT). In this study, we used human phantom and TLD-100H to measure the organ dose in each dental radiography and computed the effective dose according to ICRP (International Committee for Radioactivity Prevention) 60, 103. We measured the effective dose to be 5.1 and $29.5{\mu}Sv$ in the panoramic radiography and 11.2 and $14.4{\mu}Sv$ in the cephalometric radiography respectively. We also executed the CBCT and CT test on the maxillaries and the mandibles and found the amounts of effective dose were 53.7, 209.6, 129, and $391.5{\mu}Sv$ respectively in the CBCT and $93.3{\mu}$, 139.5, 282.7 and $489.7{\mu}Sv$ in the CT test. Consequently, it was shown that the effective dose in the CBCT test was lower than one in the CT test, but was higher in both panoramic and cephalometric radiography.

Evaluation of Dosimetric Characteristics of Small Field in Cone Versus Square Fields Based on Linear Accelerators(LINAC) for Stereotactic Radiosugery(SRS) (선형가속기를 기반으로 한 뇌정위 방사선 수술 시 전용 콘과 정방형 소조사면의 선량 특성에 관한 고찰)

  • Yoon, Joon;Lee, Gui-Won;Park, Byung-Moon
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper we evaluated small field dose characteristics of exclusive cone fields versus square fields for stereotactic radiosugery (SRS) which is based on linear accelerators (LINAC). For this test, we used a small beam detector (stereotactic fields detector : SFD) with a 6 MV photon beam and a water phantom system (IBA, Germany). Percentage depth dose (PDD) was measured for different field sets (cones : ${\Phi}1\;cm$, ${\Phi}2\;cm$, ${\Phi}3\;cm$ ; square fields : $1{\times}1\;cm^2$, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$) at a source skin distance (SSD) of 100 cm. We measured the point depths at 1.5 cm, 5 cm, 10 cm, 20 cm, and 30 cm. The output factors were measured under the same geometrical conditions of the PDD and normalized at the maximum dose depth. To analyze the penumbra, we measured the dose profile with 95 cm of SSD, 5 cm of depth for each field sizes (${\Phi}1\;cm$, ${\Phi}3\;cm$, $1{\times}1\;cm^2$, and $3{\times}3\;cm^2$) using SFD. We obtained the values for every 1 mm interval in the physical field (90%) and 0.5 mm interval in the penumbra region (20 to 80%). The PDD variation of exclusive cones and square fields were 4.3 to 7.9% lesser than the standard field size ($10{\times}10\;cm^2$. The variation of PDD was reduced while the field size was increased. To compare the beam quality, we analyzed the $PDD_{20,10}$ and the results showed under the 1% of variations for all experiments except for ${\Phi}1\;cm$ cone and $1{\times}1\;cm^2$ fields. Output factors of exclusive cone were increased 3.1~4.6% than the square fields, and the penumbra region of exclusive cone was reduced 20% as compared to the square fields. As the previous researches report, it is very important for SRS and SFD that precise dosimetry in small beam fields. In this paper, we showed the effectiveness of exclusive cone, compared to square field. And we will study on the various detector characteristics for small beam fields.

Comparison of Experimental and Radiation Therapy Planning (RTP) Dose Distributions on Air Cavity (공동(air cavity)의 존재 시 실험적 선량분포와 치료계획상의 선량분포 비교)

  • Kim, Yon-Lae;Suh, Tae-Suk;Ko, Shin-Gwan;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • This study is compared that the dose distribution by experimentation and radiation therapy planning (RTP) when the air cavity region was treated high energy photon. The dose measurements were performed with a 6 MV photon beam of linear accelerator. The polystyrene and self made acyl phantom were similar to tissue density of the human body. A parallel plate chamber was connected to an electrometer. The measurement setup was SCD (Source Chamber Distance) 100 cm and the distance of surface from air cavity was 3 cm. Absorbed dose of interface were measured by area and height. The percent depth dose were measured presence and absence of air cavity, depth according to a ratio of field size and air cavity size. The dose distribution on planning was expressed to do the inhomogeneity correction. As the area of air cavity was increased, the absorbed dose were gradually reduced. It was slightly increased, when the height of air cavity was changed from 0 cm to 0.5 cm. After the point, dose was decreased. In case of presence of air cavity, dose after distal air cavity interface was more great than absence of air cavity. The rebuild up by field size and area of air cavity occurred for field size, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$ and $6{\times}6\;cm^2$, with fixed on area of air cavity, $5{\times}5\;cm^2$. But it didn't occur at $10{\times}10\;cm^2$ field size. On the contrary, the field size was fixed on $5{\times}5\;cm^2$, rebuild up occurred in area of air cavity, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$. but, it did not occur for air cavity, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$. All of the radiation therapy planning were not occurred rebuild up. It was required to pay attention to treat tumor in air cavity because the dose distribution of planning was different from the dose distribution of patient.

Evaluation on Organ Dose and Image Quality of Lumbar Spine Radiography Using Glass Dosimeter (유리선량계를 이용한 요추검사의 장기선량 및 영상의 평가)

  • Kim, Jae-Kyeom;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The purpose of this study was to provide resources for medical exposure reduction through evaluation of organ dose and image resolution for lumbar spine around according to the size of the collimator in DR system. The size of the collimator were varied from $8^{\prime\prime}{\times}17^{\prime\prime}$ to $14^{\prime\prime}{\times}17^{\prime\prime}$ by 1" in AP and lateral projection for the lumbar spine radiography with RANDO phantom. The organ dose measured for liver, stomach, pancreas, kidney and gonad by the glass dosimeter. The image resolution was analyzed using the Image J program. The organ dose of around lumbar spine were reduced as the size of the collimator is decreased in AP projection. There were no significant changes decreasing rate whenever the size of the collimator were reduced 1" in the gonad. The organ dose showed higher on liver and kidney near the surface in lateral projection. There were decreasing rate of less than 5% in liver and kidney, but decreasing rate was 24.34% in the gonad whenever the size of the collimator were reduced 1". Organ dose difference for internal and external of collimator measured $549.8{\mu}Gy$ in the liver and $264.6{\mu}Gy$ in the stomach. There were no significant changes organ dose difference that measured $1,135.1{\mu}Gy$ in the gonad. Image Quality made no difference because SNR and PSNR were over than 30 dB when the collimator size is less than $9^{\prime\prime}{\times}17^{\prime\prime}$ on AP projection and $10^{\prime\prime}{\times}17^{\prime\prime}$ on lateral projection. Therefore, we are considered that the recommendations criterion for control of collimator were suggested in order to reduce unnecessary X-ray exposure and to obtain good image quality because lumbar spine radiography contains a lot of peripheral organs rather than other area radiography.

Evaluation of Patient Radiation Doses Using DAP Meter in Interventional Radiology Procedures (인터벤션 시술 시 면적선량계를 이용한 환자 방사선 선량 평가)

  • Kang, Byung-Sam;Yoon, Yong-Su
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The author investigated interventional radiology patient doses in several other countries, assessed accuracy of DAP meters embedded in intervention equipments in domestic country, conducted measurement of patient doses for 13 major interventional procedures with use of Dose Area Product(DAP) meters from 23 hospitals in Korea, and referred to 8,415 cases of domestic data related to interventional procedures by radiation exposure after evaluation the actual effectives of dose reduction variables through phantom test. Finally, dose reference level for major interventional procedures was suggested. In this study, guidelines for patient doses were $237.7Gy{\cdot}cm^2$ in TACE, $17.3Gy{\cdot}cm^2$ in AVF, $114.1Gy{\cdot}cm^2$ in LE PTA & STENT, $188.5Gy{\cdot}cm^2$ in TFCA, $383.5Gy{\cdot}cm^2$ in Aneurysm Coil, $64.6Gy{\cdot}cm^2$ in PTBD, $64.6Gy{\cdot}cm^2$ in Biliary Stent, $22.4Gy{\cdot}cm^2$ in PCN, $4.3Gy{\cdot}cm^2$ in Hickman, $2.8Gy{\cdot}cm^2$ in Chemo-port, $4.4Gy{\cdot}cm^2$ in Perm-Cather, $17.1Gy{\cdot}cm^2$ in PCD, and $357.9Gy{\cdot}cm^2$ in Vis, EMB. Dose referenece level acquired in this study is considered to be able to use as minimal guidelines for reducing patient dose in the interventional radiology procedures. For the changes and advances of materials and development of equipments and procedures in the interventional radiology procedures, further studies and monitorings are needed on dose reference level Korean DAP dose conversion factor for the domestic procedures.

Sensory Information Processing

  • Yoshimoto, Chiyoshi
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70$\pm$1.32mmHg/min)compared to CF dialyzers(4.32$\pm$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers. 30527 T00401030527 ^x For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500, 550, 570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500, 550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm. 30535 T00401030535 ^x Radiation-induced fibrosarcoma tumors were grown on the flanks of C3H mice. The mice were divided into two groups. One group was injected with Photofrin II, intravenously (2.5mg/kg body weight). The other group received no Photofrin II. Mice from both groups were irradialed for approximately 15 minutes at 100, 300, or 500 mW/cm2 with the argon (488nm/514.5 nm), dye(628nm) and gold vapor (pulsed 628 nm) laser light. A photosensitizer behaved as an added absorber. Under our experimental conditions, the presence of Photolfrin II increased surface temperature by at least 40% and the temperature rise due to 300 mW/cm2 irradiation exceeded values for hyperthermia. Light and temperature distributions with depth were estimated by a computer model. The model demonstrated the influence of wavelength on the thermal process and proved to be a valuable tool to investigate internal temperature rise. 30536 T00401030536 ^x We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies. 30537 T00401030537 ^x It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization. 30541 T00401030541 ^x This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine. 30545 T00401030545 ^x Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined. 30575 T00401030575 ^x A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network). 30592 T00401030592 ^x In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of 0.1˚c under the spatial resolution of lmrad, the image matrix size of 256 X 240, and tile imaging time of 4 seconds. 30593 T00401030593 ^x In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network. 30594 T00401030594 ^x In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality. 30608 T00401030608 ^x Laboratory information system (LIS) is a key tool to manage laboratory data in clinical pathology. Our department has developed an information system for routine hematology using down-sized computer system. We have used an IBM 486 compatible PC with 16MB main memory, 210 MB hard disk drive, 9 RS-232C port and 24 pin dot printer. The operating system and database management system were SCO UNIX and SCO foxbase, respectively. For program development, we used Xbase language provided by SCO foxbase. The C language was used for interface purpose. To make the system use friendly, pull-down menu was used. The system connected to our hospital information system via application program interface (API), so the information related to patient and request details is automatically transmitted to our computer. Our system interfaced with fwd complete blood count analyzers(Sysmex NE-8000 and Coulter STKS) for unidirectional data tansmission from analyzer to computer. The authors suggests that this system based on down-sized computer could provide a progressive approach to total LIS based on local area network, and the implemented system could serve as a model for other hospital's LIS for routine hematology. 30609 T00401030609 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength. 30618 T00401030618 ^x This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively. 30619 T00401030619 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased. 30620 T00401030620 ^x We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane, To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medical prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volume and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate. 30621 T00401030621 ^x Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained. 30622 T00401030622 ^x N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms. 30623 T00401030623 ^x In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research. 30624 T00401030624 ^x A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells. 30625 T00401030625 ^x An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients. 30626 T00401030626 ^x Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult. 30627 T00401030627 ^x A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator. 30628 T00401030628 ^x The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements. 30638 T00401030638 ^x A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filers representing global features is proposed in this network. 30659 T00401030659 ^x An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3, 000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented. 30768 T00401030768 ^x In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.SpO2 with Plethysmograph.

  • PDF