DOI QR코드

DOI QR Code

Adaptive Image Rescaling for Weakly Contrast-Enhanced Lesions in Dedicated Breast CT: A Phantom Study

약하게 조영증강된 병변의 유방 전용 CT 영상의 대조도 개선을 위한 적응적 영상 재조정 방법: 팬텀 연구

  • Bitbyeol Kim (School of Mechanical Engineering and the Center for Advanced Medical Engineering Research, Pusan National University) ;
  • Ho Kyung Kim (School of Mechanical Engineering and the Center for Advanced Medical Engineering Research, Pusan National University) ;
  • Jinsung Kim (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Yongkan Ki (Department of Radiation Oncology, Pusan National University School of Medicine) ;
  • Ji Hyeon Joo (Department of Radiation Oncology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital) ;
  • Hosang Jeon (Department of Radiation Oncology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital) ;
  • Dahl Park (Department of Radiation Oncology, Pusan National University Hospital) ;
  • Wontaek Kim (Department of Radiation Oncology, Pusan National University School of Medicine) ;
  • Jiho Nam (Department of Radiation Oncology, Pusan National University Hospital) ;
  • Dong Hyeon Kim (Department of Radiation Oncology, Pusan National University Hospital)
  • 김빛별 (부산대학교 기계공학부) ;
  • 김호경 (부산대학교 기계공학부) ;
  • 김진성 (연세대학교 의과대학 방사선종양학교실) ;
  • 기용간 (부산대학교 의과대학 방사선종양학교실) ;
  • 주지현 (양산부산대학교병원 방사선종양학과, 의생명융합연구소) ;
  • 전호상 (양산부산대학교병원 방사선종양학과, 의생명융합연구소) ;
  • 박달 (부산대학교병원 방사선종양학과) ;
  • 김원택 (부산대학교 의과대학 방사선종양학교실) ;
  • 남지호 (부산대학교병원 방사선종양학과) ;
  • 김동현 (부산대학교병원 방사선종양학과)
  • Received : 2020.11.18
  • Accepted : 2021.06.22
  • Published : 2021.11.01

Abstract

Purpose Dedicated breast CT is an emerging volumetric X-ray imaging modality for diagnosis that does not require any painful breast compression. To improve the detection rate of weakly enhanced lesions, an adaptive image rescaling (AIR) technique was proposed. Materials and Methods Two disks containing five identical holes and five holes of different diameters were scanned using 60/100 kVp to obtain single-energy CT (SECT), dual-energy CT (DECT), and AIR images. A piece of pork was also scanned as a subclinical trial. The image quality was evaluated using image contrast and contrast-to-noise ratio (CNR). The difference of imaging performances was confirmed using student's t test. Results Total mean image contrast of AIR (0.70) reached 74.5% of that of DECT (0.94) and was higher than that of SECT (0.22) by 318.2%. Total mean CNR of AIR (5.08) was 35.5% of that of SECT (14.30) and was higher than that of DECT (2.28) by 222.8%. A similar trend was observed in the subclinical study. Conclusion The results demonstrated superior image contrast of AIR over SECT, and its higher overall image quality compared to DECT with half the exposure. Therefore, AIR seems to have the potential to improve the detectability of lesions with dedicated breast CT.

목적 Dedicated breast CT (이하 DBCT)는 유방 압박의 고통이 없는 영상 진단 기법으로 최근 주목받고 있다. 본 연구에서는 DBCT 영상에서 약하게 조영증강된 작은 병변의 검출률을 높이기 위해 피사체의 기하학적 정보를 이용하여 최적의 영상 문턱값을 제공하는 adaptive image rescaling (이하 AIR) 기법을 제안하였다. 대상과 방법 5개의 동일 크기의 구멍과 서로 다른 크기의 구멍을 가지는 두 개의 디스크를 각각 제작하고, 이를 60 kVp와 100 kVp로 스캔하여 single-energy CT (이하 SECT), dual-energy CT (이하 DECT), 그리고 AIR 영상을 생성하였다. 전임상 평가를 위해 돼지 조직 영상도 획득하였다. Image contrast (이하 IC)와 contrast-to-noise ratio (이하 CNR)로 화질을 평가하였으며, student's t test를 이용하여 영상 간 화질의 차이를 검증하였다. 결과 AIR의 평균 IC (0.70)는 DECT (0.94)의 74.5%로 나타났으며, SECT (0.22) 보다 318.2% 높았다. 또한 AIR의 평균 CNR (5.08)은 SECT (14.30)의 35.5%로 나타났고 DECT (2.28) 보다 222.8% 높게 측정되었다. 돼지 조직의 전임상 평가 결과도 비슷한 양상을 보였다. 결론 AIR은 SECT보다 높은 영상 대조도를 가지며, 50% 선량만으로도 DECT에 비견할 만한 화질 성능을 제공할 수 있음을 확인하였다. 따라서 AIR은 DBCT 영상에서 약하게 조영증강된 병변의 검출률을 개선할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (2017R1D1A1B03031351 and 2015M3A9E2067002).

References

  1. International Agency for research on Cancer. WHO GLOBOCAN cancer facts sheets: breast cancer. Lyon: WHO 2012 
  2. Torre L, Siegel R, Jemal A. Global cancer facts & figures. 3rd ed. Atlanta: American Cancer Society 2015 
  3. Kopans DB. Breast imaging. 3rd ed. Philadelphia: Lippincott Williams & Wilkins 2007 
  4. Karellas A, Vedantham S. Breast cancer imaging: a perspective for the next decade. Med Phys 2008;35:4878-4897  https://doi.org/10.1118/1.2986144
  5. Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan AL, Miller DF. Dedicated breast CT: initial clinical experience. Radiology 2008;246:725-733  https://doi.org/10.1148/radiol.2463070410
  6. Yang WT, Carkaci S, Chen L, Lai CJ, Sahin A, Whitman GJ, et al. Dedicated cone-beam breast CT: feasibility study with surgical mastectomy specimens. AJR Am J Roentgenol 2007;189:1312-1315  https://doi.org/10.2214/AJR.07.2403
  7. Sarno A, Mettivier G, Russo P. Dedicated breast computed tomography: basic aspects. Med Phys 2015;42:2786-2804  https://doi.org/10.1118/1.4919441
  8. O'Connell AM, Karellas A, Vedantham S. The potential role of dedicated 3D breast CT as a diagnostic tool: review and early clinical examples. Breast J 2014;20:592-605  https://doi.org/10.1111/tbj.12327
  9. Boone JM, Nelson TR, Lindfors KK, Seibert JA. Dedicated breast CT: radiation dose and image quality evaluation. Radiology 2001;221:657-667  https://doi.org/10.1148/radiol.2213010334
  10. Goh V, Padhani AR. Imaging tumor angiogenesis: functional assessment using MDCT or MRI? Abdom Imaging 2006;31:194-199  https://doi.org/10.1007/s00261-005-0387-4
  11. Dawson P. Functional imaging in CT. Eur J Radiol 2006;60:331-340  https://doi.org/10.1016/j.ejrad.2006.06.023
  12. Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur J Radiol 1999;30:198-205  https://doi.org/10.1016/S0720-048X(99)00012-1
  13. Cuenod CA, Fournier L, Balvay D, Guinebretiere JM. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 2006;31:188-193  https://doi.org/10.1007/s00261-005-0386-5
  14. Prionas ND, Lindfors KK, Ray S, Huang SY, Beckett LA, Monsky WL, et al. Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology 2010;256:714-723  https://doi.org/10.1148/radiol.10092311
  15. Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys 1979;6:70-71  https://doi.org/10.1118/1.594555
  16. Avrin DE, Macovski A, Zatz LE. Clinical application of Compton and photo-electric reconstruction in computed tomography: preliminary results. Invest Radiol 1978;13:217-222  https://doi.org/10.1097/00004424-197805000-00007
  17. Chiro GD, Brooks RA, Kessler RM, Johnston GS, Jones AE, Herdt JR, et al. Tissue signatures with dual-energy computed tomography. Radiology 1979;131:521-523  https://doi.org/10.1148/131.2.521
  18. Riederer SJ, Mistretta CA. Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys 1977;4:474-481  https://doi.org/10.1118/1.594357
  19. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 2010;30:1037-1055  https://doi.org/10.1148/rg.304095175
  20. Kis BJ, Sarnyai Z, Kakonyi R, Erdelyi M, Szabo G. Single-energy material decomposition using X-ray path length estimation. J Comput Assist Tomogr 2012;36:768-777  https://doi.org/10.1097/RCT.0b013e318267ab96
  21. Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys 1985;12:252-255  https://doi.org/10.1118/1.595715
  22. Ingle Jr JD, Crouch SR. Spectrochemical analysis. Englewood Cliffs: Prentice Hall 1988:590 
  23. Johnson T, Fink C, Schonberg SO, Reiser MF. Dual energy CT in clinical practice. Berlin, Heidelberg: Springer 2011 
  24. Brooks RA. A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr 1977;1:487-493  https://doi.org/10.1097/00004728-197710000-00016
  25. Kalender WA, Klotz E, Kostaridou L. An algorithm for noise suppression in dual energy CT material density images. IEEE Trans Med Imaging 1988;7:218-224  https://doi.org/10.1109/42.7785
  26. Warp RJ, Dobbins JT 3rd. Quantitative evaluation of noise reduction strategies in dual-energy imaging. Med Phys 2003;30:190-198  https://doi.org/10.1118/1.1538232
  27. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A 1984;1:612-619  https://doi.org/10.1364/JOSAA.1.000612
  28. Macovski A, Nishimura DG, Doost-Hoseini A, Brody WR. Measurement-dependent filtering: a novel approach to improved SNR. IEEE Trans Med Imaging 1983;2:122-127  https://doi.org/10.1109/TMI.1983.4307625
  29. Nishimura DG, Macovski A, Brody WR. Noise reduction methods for hybrid subtraction. Med Phys 1984;11:259-265  https://doi.org/10.1118/1.595501
  30. McCollough CH, Van Lysel MS, Peppler WW, Mistretta CA. A correlated noise reduction algorithm for dual-energy digital subtraction angiography. Med Phys 1989;16:873-880  https://doi.org/10.1118/1.596436
  31. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277-2284  https://doi.org/10.1056/NEJMra072149
  32. Mettivier G, Russo P, Cesarelli M, Ospizio R, Passeggio G, Roscilli L, et al. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast. Nucl Instrum Methods Phys Res 2011;629:350-356  https://doi.org/10.1016/j.nima.2010.10.093
  33. Crotty DJ, Brady SL, Jackson DC, Toncheva GI, Anderson CE, Yoshizumi TT, et al. Evaluation of the absorbed dose to the breast using radiochromic film in a dedicated CT mammotomography system employing a quasi-monochromatic x-ray beam. Med Phys 2011;38:3232-3245  https://doi.org/10.1118/1.3574875
  34. Coleman AJ, Sinclair M. A beam-hardening correction using dual-energy computed tomography. Phys Med Biol 1985;30:1251-1256  https://doi.org/10.1088/0031-9155/30/11/007
  35. Wong CK, Huang HK. Calibration procedure in dual-energy scanning using the basis function technique. Med Phys 1983;10:628-635  https://doi.org/10.1118/1.595367
  36. Kachelriess M, Sourbelle K, Kalender WA. Empirical cupping correction: a first-order raw data precorrection for cone-beam computed tomography. Med Phys 2006;33:1269-1274  https://doi.org/10.1118/1.2188076
  37. Stenner P, Berkus T, Kachelriess M. Empirical dual energy calibration (EDEC) for cone-beam computed tomography. Med Phys 2007;34:3630-3641 https://doi.org/10.1118/1.2769104