• Title/Summary/Keyword: Medical learning

Search Result 1,536, Processing Time 0.027 seconds

Re-defining Named Entity Type for Personal Information De-identification and A Generation method of Training Data (개인정보 비식별화를 위한 개체명 유형 재정의와 학습데이터 생성 방법)

  • Choi, Jae-hoon;Cho, Sang-hyun;Kim, Min-ho;Kwon, Hyuk-chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.206-208
    • /
    • 2022
  • As the big data industry has recently developed significantly, interest in privacy violations caused by personal information leakage has increased. There have been attempts to automate this through named entity recognition in natural language processing. In this paper, named entity recognition data is constructed semi-automatically by identifying sentences with de-identification information from de-identification information in Korean Wikipedia. This can reduce the cost of learning about information that is not subject to de-identification compared to using general named entity recognition data. In addition, it has the advantage of minimizing additional systems based on rules and statistics to classify de-identification information in the output. The named entity recognition data proposed in this paper is classified into twelve categories. There are included de-identification information, such as medical records and family relationships. In the experiment using the generated dataset, KoELECTRA showed performance of 0.87796 and RoBERTa of 0.88.

  • PDF

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Multi-task Deep Neural Network Model for T1CE Image Synthesis and Tumor Region Segmentation in Glioblastoma Patients (교모세포종 환자의 T1CE 영상 생성 및 암 영역분할을 위한 멀티 태스크 심층신경망 모델)

  • Kim, Eunjin;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.474-476
    • /
    • 2021
  • Glioblastoma is the most common brain malignancies arising from glial cells. Early diagnosis and treatment plan establishment are important, and cancer is diagnosed mainly through T1CE imaging through injection of a contrast agent. However, the risk of injection of gadolinium-based contrast agents is increasing recently. Region segmentation that marks cancer regions in medical images plays a key role in CAD systems, and deep neural network models for synthesizing new images are also being studied. In this study, we propose a model that simultaneously learns the generation of T1CE images and segmentation of cancer regions. The performance of the proposed model is evaluated using similarity measurements including mean square error and peak signal-to-noise ratio, and shows average result values of 21 and 39 dB.

  • PDF

Attention-Based Heart Rate Estimation using MobilenetV3

  • Yeo-Chan Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.1-7
    • /
    • 2023
  • The advent of deep learning technologies has led to the development of various medical applications, making healthcare services more convenient and effective. Among these applications, heart rate estimation is considered a vital method for assessing an individual's health. Traditional methods, such as photoplethysmography through smart watches, have been widely used but are invasive and require additional hardware. Recent advancements allow for contactless heart rate estimation through facial image analysis, providing a more hygienic and convenient approach. In this paper, we propose a lightweight methodology capable of accurately estimating heart rate in mobile environments, using a specialized 2-channel network structure based on 2D convolution. Our method considers both subtle facial movements and color changes resulting from blood flow and muscle contractions. The approach comprises two major components: an Encoder for analyzing image features and a regression layer for evaluating Blood Volume Pulse. By incorporating both features simultaneously our methodology delivers more accurate results even in computing environments with limited resources. The proposed approach is expected to offer a more efficient way to monitor heart rate without invasive technology, particularly well-suited for mobile devices.

Current status and needs for special education to support educational gaps for students with disabilities after COVID-19 (코로나19 이후 장애학생 교육 격차 지원을 위한 특수교육 현황과 요구)

  • Janghyun Lim;Haein Jeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.33-39
    • /
    • 2023
  • Although COVID-19 has transitioned to a level 4 infectious disease in 2023 and has entered a stable trend, in special education settings, the importance of supporting the academic and social development gaps of students with disabilities caused by non-face-to-face learning situations such as remote classes during the COVID-19 period is emerging. there is. Accordingly, in this study, in order to identify and support the educational status and academic deficits of students with disabilities after COVID-19, we conducted a survey targeting 2,214 special education teachers in 17 cities and analyzed the results. As a result of the study, due to COVID-19, the developmental delay and educational gap in students with disabilities in terms of academics, emotions, and behavior deepened, and there was a high demand for manpower support, psychological counseling, and medical support for emotional behavior as a way to support this. Based on the results of this study, follow-up results were proposed.

Decadal analysis of livestock tuberculosis in Korea (2013~2022): Epidemiological patterns and trends

  • Yeonsu Oh;Dongseob Tark;Gwang-Seon Ryoo;Dae-Sung Yoo;Woo, H. Kim;Won-Il Kim;Choi-Kyu Park;Won-Keun Kim;Ho-Seong Cho
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.4
    • /
    • pp.293-302
    • /
    • 2023
  • This study provides a comprehensive analysis of the epidemiological trends and challenges in managing tuberculosis (TB) in livestock in Korea from 2013 to 2022. Tuberculosis, caused by the Mycobacterium tuberculosis complex, is a significant zoonotic disease affecting cattle, deer, and other domesticated animals. Despite the initiation of a test-and-slaughter eradication policy in 1964, TB has continued to persist in Korean livestock, particularly in cattle and deer. This study used data from the Korea Animal Health Integrated System and provincial animal health laboratories to analyze TB incidence in various livestock including different cattle breeds and deer species. The results from 2013 to 2022 showed a peak in TB cases in 2019 with a subsequent decline by 2022. The study highlighted a significant incidence of TB in Korean native cattle and the need for amore inclusive approach towards TB testing and control in different cattle breeds. Additionally, the study underscored the importance of addressing TB in other animals such as goats, wildlife, and companion animals for a holistic approach to TB eradication in Korea. The findings suggest that while the test-and-slaughter strategy has been historically effective, there is a need for adaptation to the current challenges, and learning from successful eradiation stories on other countries like Australia. A collaborative effort involving an expanded surveillance system, active private sector participation, and robust government support essential for the efficient eradication of TB in livestock in Korea.

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

Research of PPI prediction model based on POST-TAVR ECG (POST-TAVR ECG 기반의 PPI 예측 모델 연구)

  • InSeo Song;SeMo Yang;KangYoon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.29-38
    • /
    • 2024
  • After Transcatheter Aortic Valve Replacement (TAVR), comprehensive management of complications, including the need for Permanent Pacemaker Implantation (PPI), is crucial, increasing the demand for accurate prediction models. Departing from traditional image-based methods, this study developed an optimal PPI prediction model based on ECG data using the XGBoost algorithm. Focusing on ECG signals like DeltaPR and DeltaQRS as key indicators, the model effectively identifies the correlation between conduction disorders and PPI needs, achieving superior performance with an AUC of 0.91. Validated using data from two hospitals, it demonstrated a high similarity rate of 95.28% in predicting PPI from ECG characteristics. This confirms the model's effective applicability across diverse hospital data, establishing a significant advancement in the development of reliable and practical PPI prediction models with reduced dependence on human intervention and costly medical imaging.

Generation of virtual mandibular first molar teeth and accuracy analysis using deep convolutional generative adversarial network (심층 합성곱 생성적 적대 신경망을 활용한 하악 제1대구치 가상 치아 생성 및 정확도 분석)

  • Eun-Jeong Bae;Sun-Young Ihm
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.36-41
    • /
    • 2024
  • Purpose: This study aimed to generate virtual mandibular left first molar teeth using deep convolutional generative adversarial networks (DCGANs) and analyze their matching accuracy with actual tooth morphology to propose a new paradigm for using medical data. Methods: Occlusal surface images of the mandibular left first molar scanned using a dental model scanner were analyzed using DCGANs. Overall, 100 training sets comprising 50 original and 50 background-removed images were created, thus generating 1,000 virtual teeth. These virtual teeth were classified based on the number of cusps and occlusal surface ratio, and subsequently, were analyzed for consistency by expert dental technicians over three rounds of examination. Statistical analysis was conducted using IBM SPSS Statistics ver. 23.0 (IBM), including intraclass correlation coefficient for intrarater reliability, one-way ANOVA, and Tukey's post-hoc analysis. Results: Virtual mandibular left first molars exhibited high consistency in the occlusal surface ratio but varied in other criteria. Moreover, consistency was the highest in the occlusal buccal lingual criteria at 91.9%, whereas discrepancies were observed most in the occusal buccal cusp criteria at 85.5%. Significant differences were observed among all groups (p<0.05). Conclusion: Based on the classification of the virtually generated left mandibular first molar according to several criteria, DCGANs can generate virtual data highly similar to real data. Thus, subsequent research in the dental field, including the development of improved neural network structures, is necessary.

Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction (MRI 신호획득과 영상재구성에서의 인공지능 적용)

  • Junghwa Kang;Yoonho Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1229-1239
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has shown potential clinical utility in a wide range of MRI fields. In particular, AI models for improving the efficiency of the image acquisition process and the quality of reconstructed images are being actively developed by the MR research community. AI is expected to further reduce acquisition times in various MRI protocols used in clinical practice when compared to current parallel imaging techniques. Additionally, AI can help with tasks such as planning, parameter optimization, artifact reduction, and quality assessment. Furthermore, AI is being actively applied to automate MR image analysis such as image registration, segmentation, and object detection. For this reason, it is important to consider the effects of protocols or devices in MR image analysis. In this review article, we briefly introduced issues related to AI application of MR image acquisition and reconstruction.