Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C2011105) and Innovative Human Resource Development for Local Intellectualization program through the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)(IITP-2024-RS-2022-00156334).
References
- Liu Z, Zhang Z, Lei Z, Omura M, Wang RL, Gao S. Dendritic deep learning for medical segmentation. IEEE/CAA J Autom Sin. 2024;11:803-805.
- Kebaili A, Lapuyade-Lahorgue J, Ruan S. Deep learning approaches for data augmentation in medical imaging: a review. J Imaging. 2023;9:81.
- Bouali R, Mahboub O, Lazaar M. Review of dental diagnosis by deep learning models: trends, applications and challenges. Procedia Comput Sci. 2024;231:221-228. https://doi.org/10.1016/j.procs.2023.12.196
- Bae EJ, Jeong J, Son Y, Lim J. A study on virtual tooth image generation using deep learning - based on the number of learning. J Korean Acad Dent Technol. 2020;42:1-8. https://doi.org/10.14347/kadt.2020.42.1.1
- Imangaliyev S, van der Veen MH, Volgenant CMC, Keijser BJF, Crielaard W, Levin E. Deep learning for classification of dental plaque images. In: Pardalos P, Conca P, Giuffrida G, Nicosia G, eds. Machine learning, optimization, and big data. MOD 2016. Cham: Springer, 2016. p. 407-410.
- Patil HK, Seshadri R. Big data security and privacy issues in healthcare. Paper presented at: 2014 IEEE International Congress on Big Data; 2014 Jun 27-Jul 2; Anchorage, AK, USA. Piscataway, NJ: IEEE, 2014. pp. 762-765.
- Zhang Q, Wang H, Lu H, Won D, Yoon SW. Medical image synthesis with generative adversarial networks for tissue recognition. Paper presented at: 2018 IEEE International Conference on Healthcare Informatics; 2018 Jun 4-7; New York, NY, USA. Piscataway, NJ: IEEE, 2018. pp. 199-207.
- Yu S. Big privacy: challenges and opportunities of privacy study in the age of big data. IEEE Access. 2016;4:2751-2763. https://doi.org/10.1109/ACCESS.2016.2577036
- Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015. https://doi.org/10.48550/arXiv.1511.06434 [Epub ahead of print]
- Ding H, Cui Z, Maghami E, Chen Y, Matinlinna JP, Pow EHN, et al. Morphology and mechanical performance of dental crown designed by 3D-DCGAN. Dent Mater. 2023;39:320-332. https://doi.org/10.1016/j.dental.2023.02.001
- Tsoi JKH, Ding H, Burrow M, Fok A, Wang W. Premolar and molar crown generation using 3D-GAN method. Dent Mater. 2023;39(Suppl 1):e76.
- Yang S, Kim KD, Ariji E, Kise Y. Generative adversarial networks in dental imaging: a systematic review. Oral Radiol. 2024;40:93-108. https://doi.org/10.1007/s11282-023-00719-1
- Broll A, Goldhacker M, Hahnel S, Rosentritt M. Generative deep learning approaches for the design of dental restorations: a narrative review. J Dent. 2024;145:104988.
- Meredith HV, Hixon EH. Frequency, size, and bilateralism of Carabelli's tubercle. J Dent Res. 1954;33:435-440. https://doi.org/10.1177/00220345540330031601
- Stuart CE. Good occlusion for natural teeth. J Prosthet Dent. 1964;14:716-724. https://doi.org/10.1016/0022-3913(64)90207-0
- Hellman M. Racial characters in human dentition part I. A racial distribution of the Dryopithecus pattern and its modifications in the lower molar teeth of man. Proc Am Philos Soc. 1928;67:157-174.
- Andrews LF. The six keys to normal occlusion. Am J Orthod. 1972;62:296-309. https://doi.org/10.1016/S0002-9416(72)90268-0
- Christie TE. Cephalometric patterns of adults with normal occlusion. Angle Orthod. 1977;47:128-135.
- Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155-163. https://doi.org/10.1016/j.jcm.2016.02.012
- Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. Pearson/Prentice Hall, 2009. p. 892.
- Lucic M, Kurach K, Michalski M, Bousquet O, Gelly S. Are GANs created equal? A large-scale study. Paper presented at: 32nd International Conference on Neural Information Processing Systems; 2018 Dec 3-8; Montreal, Quebec, Canada. Red Hook, NJ: Curran Associates Inc., 2018. pp. 698-707.
- Kim HY. Statistical notes for clinical researchers: evaluation of measurement error 1: using intraclass correlation coefficients. Restor Dent Endod. 2013;38:98-102. https://doi.org/10.5395/rde.2013.38.2.98