• 제목/요약/키워드: Medical 3D printing

검색결과 127건 처리시간 0.026초

자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가 (The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing)

  • 이기백;남기창;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권4호
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

Utilization of desktop 3D printer-fabricated "Cost-Effective" 3D models in orthognathic surgery

  • Narita, Masato;Takaki, Takashi;Shibahara, Takahiko;Iwamoto, Masashi;Yakushiji, Takashi;Kamio, Takashi
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제42권
    • /
    • pp.24.1-24.7
    • /
    • 2020
  • Background: In daily practice, three-dimensional patient-specific jawbone models (3D models) are a useful tool in surgical planning and simulation, resident training, patient education, and communication between the physicians in charge. The progressive improvements of the hardware and software have made it easy to obtain 3D models. Recently, in the field of oral and maxillofacial surgery, there are many reports on the benefits of 3D models. We introduced a desktop 3D printer in our department, and after a prolonged struggle, we successfully constructed an environment for the "in-house" fabrication of the previously outsourced 3D models that were initially outsourced. Through various efforts, it is now possible to supply inexpensive 3D models stably, and thus ensure safety and precision in surgeries. We report the cases in which inexpensive 3D models were used for orthodontic surgical simulation and discuss the surgical outcomes. Review: We explained the specific CT scanning considerations for 3D printing, 3D printing failures, and how to deal with them. We also used 3D models fabricated in our system to determine the contribution to the surgery. Based on the surgical outcomes of the two operators, we compared the operating time and the amount of bleeding for 25 patients who underwent surgery using a 3D model in preoperative simulations and 20 patients without using a 3D model. There was a statistically significant difference in the operating time between the two groups. Conclusions: In this article, we present, with surgical examples, our in-house practice of 3D simulation at low costs, the reality of 3D model fabrication, problems to be resolved, and some future prospects.

Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가 (The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT)

  • 안예찬;김진만;김찬양;김종식;박용철
    • 대한방사선치료학회지
    • /
    • 제32권
    • /
    • pp.41-52
    • /
    • 2020
  • 목 적: Hypopharynx Cancer의 VMAT 치료 시 Neck 부분에 Commercial Bolus(이하 CB)와 3D Printing 기술로 제작한 3D Bolus를 각각 적용한 두 치료 계획을 비교함으로써 3D Bolus 적용의 선량학적 유용성, setup 재현성 및 효율성을 알아보고 임상적 적용 가능성을 평가하고자 한다. 대상 및 방법: CB를 적용한 RANDO phantom의 CT image를 바탕으로 3D Bolus를 동일한 형태로 제작하였다. 3D Bolus는 OMG SLA 660 Printer, MaterialiseMagics software를 이용하여 SLA기법을 통해 밀도 1.2 g/㎤의 폴리우레탄 아크릴레이트 수지로 출력하였다. CB와 3D Bolus를 적용한 두 CT image를 바탕으로 Hypopharynx Cancer의 VMAT 치료를 가정하여 치료 계획을 수립하였다. 수립한 두 치료 계획을 각각 18회에 걸쳐 CBCT image를 획득하였고, 매 회 setup time을 측정하여 치료 효율성을 평가하였다. 획득한 CBCT image를 바탕으로 전산화 치료계획 시스템 Pinnacle을 통해 Adaptive Plan을 진행함으로써 Target, 정상 장기 선량 평가와 Bolus Volume의 변화를 평가하였다. 결 과: 각 치료 계획에 대한 setup time은 CB 적용 치료 계획에 비해 3D Bolus 적용 치료 계획에서 평균 28 sec 감소하였다. 치료 전 기간 내 Bolus Volume 변화는 CB Initial Plan 83.9㎤에서 86.1±2.70㎤, 3D Bolus Initial Plan 92.2㎤에서 99.8±0.46㎤로 나타났다. CTV Min Value의 변화는 CB Initial Plan 191.6cGy에서 167.4±19.38cGy, 3D Bolus Initial Plan 167.3cGy에서 149.5±18.27cGy로 나타났다. CTV Mean Value의 변화는 CB Initial Plan 227.1cGy에서 228.3±0.38cGy, 3D Bolus Initial Plan 225.9cGy에서 227.7±0.30cGy로 나타났다. PTV Min Value의 변화는 CB Initial Plan 128.5cGy에서 74.9±19.47cGy, 3D Bolus Initial Plan 139.9cGy에서 83.2±12.92cGy로 나타났다. PTV Mean Value의 변화는 CB Initial Plan 225.4cGy에서 226.2±0.83cGy, 3D Bolus Initial Plan 224.1cGy에서 225.8±0.33cGy로 나타났다. 정상 장기 Spinal Cord에 대한 Max Value는 매 회 평균 135.6cGy로 동일하게 나타났다. 결 론: 본 논문의 실험 결과를 통해 불균등한 체표면에 대한 3D Bolus의 적용이 Commercial Bolus 적용에 비해 선량학적으로 유용하고 setup 재현성 및 효율성 또한 우수함을 알 수 있었다. 추후 3D Printing 재료의 다양성에 대한 연구와 함께 추가적인 사례 연구가 진행된다면 방사선 치료 분야에서 3D Bolus의 적용이 더욱 활발하게 진행될 것으로 사료된다.

Color stability of provisional restorative materials with different fabrication methods

  • Song, So-Yeon;Shin, Yo-Han;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권5호
    • /
    • pp.259-264
    • /
    • 2020
  • PURPOSE. The aim of this study was to investigate and compare the color stability of provisional restorative materials fabricated by 3D printing, dental milling, and conventional materials. MATERIALS AND METHODS. For the experimental groups, two commercially available 3D-printing provisional resins (E-Dent 100; EnvisionTEC GmbH, Germany & VeroGlaze™; Stratasys®, USA), two dental milling blocks (PMMA Disk; Yamahachi Dental Co., Japan & Telio®CAD; Ivoclar Vivadent AG, Liechtenstein), and two conventional materials (Alike™; GC Co., Japan & Luxatemp automix plus; DMG, Germany) were used. The water sorption and solubility test were (n=10, respectively) carried out according to ISO4049:2000 (International Standards Organization, Geneva, Switzerland). For the color stability test (n=10), coffee and black tea were used as staining solutions, and the specimens were stored for 12 weeks. Data were analyzed by one-way ANOVA and Tukey's HSD using SPSS version 22.0 (SPSS Inc. Chicago, IL, USA) (P<.05). RESULTS. Alike and Veroglaze showed the highest values and Luxatemp showed the lowest water sorption. In the color stability test, the ΔE of conventional materials varied depending on the staining solution. PMMA milling blocks showed a relatively low ΔE up to 4 weeks, and then significantly increased after 8 weeks (P<.05). 3D-printed materials exhibited a high ΔE or a significant increase over time (P<.05). CONCLUSION. The degree of discoloration increased with time, and a visually perceptible color difference value (ΔE) was shown regardless of the materials and solutions. PMMA milled and 3D-printed materials showed more rapid change in discoloration after 8 weeks.

3D 프린터를 이용한 마이크로 리액터 가공에 관한 연구 (Fabrication of Micro-reactor by 3D Printing Machine)

  • 최해운;윤성철;마재권;방대욱
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.218-222
    • /
    • 2014
  • A 3D printer was used to fabricate a micro-TAS system for biomedical applications. A polymeric medical device fabrication based on a 3D printer can be performed at atmospheric conditions. A CAD- and CAM-based system is a flexible method to design medical components, and a 3D printer is a suitable device to perform this task. In this research, a 100-micron-wide fluidic channel was fabricated with a high-aspect ratio. A cross-sectional SEM image confirmed its possible usage in a micro-reactor using 3D printers. CNC-machined samples were compared to 3D printer-fabricated samples, and the advantages and disadvantages were discussed. Based on the SEM images, the surface roughness of the 3D printed reactor was not affected by wet or dry conditions due to its manufacturing principle. An aspect ratio of 5 to 1 was achievable with 100-${\mu}$ m-wide fluid channels. No melting was found, and the shape of channels was straight enough to be used for micro reactors.

Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy

  • Oh, Se An;Kim, Min Jeong;Kang, Ji Su;Hwang, Hyeon Seok;Kim, Young Jin;Kim, Seong Hoon;Park, Jae Won;Yea, Ji Woon;Kim, Sung Kyu
    • 한국의학물리학회지:의학물리
    • /
    • 제28권3호
    • /
    • pp.106-110
    • /
    • 2017
  • The variable density phantom fabricated with varying the infill values of 3D printer to provide more accurate dose verification of radiation treatments. A total of 20 samples of rectangular shape were fabricated by using the $Finebot^{TM}$ (AnyWorks; Korea) Z420 model ($width{\times}length{\times}height=50mm{\times}50mm{\times}10mm$) varying the infill value from 5% to 100%. The samples were scanned with 1-mm thickness using a Philips Big Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The average Hounsfield Unit (HU) measured by the region of interest (ROI) on the transversal CT images. The average HU and the infill values of the 3D printer measured through the 2D area profile measurement method exhibited a strong linear relationship (adjusted R-square=0.99563) in which the average HU changed from -926.8 to 36.7, while the infill values varied from 5% to 100%. This study showed the feasibility fabricating variable density phantoms using the 3D printer with FDM (Fused Deposition Modeling)-type and PLA (Poly Lactic Acid) materials.

Mandible Reconstruction with 3D Virtual Planning

  • Woo, Taeyong;Kraeima, Joep;Kim, Yong Oock;Kim, Young Seok;Roh, Tai Suk;Lew, Dae Hyun;Yun, In Sik
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권2호
    • /
    • pp.90-93
    • /
    • 2015
  • The fibula free flap has now become the most reliable and frequently used option for mandible reconstruction. Recently, three dimensional images and printing technologies are applied to mandibular reconstruction. We introduce our recent experience of mandibular reconstruction using three dimensionally planned fibula free flap in a patient with gunshot injury. The defect was virtually reconstructed with three-dimensional image. Because bone fragments are dislocated from original position, relocation was necessary. Fragments are virtually relocated to original position using mirror image of unaffected right side of the mandible. A medical rapid prototyping (MRP) model and cutting guide was made with 3D printer. Titanium reconstruction plate was adapted to the MRP model manually. 7 cm-sized fibula bone flap was designed on left lower leg. After dissection, proximal and distal margin of fibula flap was osteotomized by using three dimensional cutting guide. Segmentation was also done as planned. The fibula bone flap was attached to the inner side of the prebent reconstruction plate and fixed with screws. Postoperative evaluation was done by comparison between preoperative planning and surgical outcome. Although dislocated condyle is still not in ideal position, we can see that reconstruction was done as planned.

Assessment of effect of accelerated aging on interim fixed dental materials using digital technologies

  • Omar, Alageel;Omar, Alsadon;Haitham, Almansour;Abdullah, Alshehri;Fares, Alhabbad;Majed, Alsarani
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권6호
    • /
    • pp.360-368
    • /
    • 2022
  • PURPOSE. This study assessed the physical and mechanical properties of interim crown materials fabricated using various digital techniques after accelerated aging. MATERIALS AND METHODS. Three groups of interim dental restorative materials (N = 20) were tested. The first group (CO) was fabricated using a conventional manual method. The second group (ML) was prepared from prefabricated resin blocks for the milling method and cut into specimen sizes using a cutting disc. The third group (3D) was additively manufactured using a digital light-processing (DLP) 3D printer. Aging acceleration treatments using toothbrushing and thermocycling simulators were applied to half of the specimens corresponding to three years of usage in the oral environment (N = 10). Surface roughness (Ra), Vickers microhardness, 3-point bending, sorption, and solubility tests were performed. A 2-way analysis of variance (ANOVA) and Fisher's multiple comparison test were used to compare the results among the groups. RESULTS. The mean surface roughness (Ra) of the resin after accelerated aging was significantly higher in the CO and ML groups than that before aging, but not in the 3D group. All groups showed reduced hardness after accelerated aging. The flexural strength values were highest in the 3D group, followed by the ML and CO groups after accelerated aging. Accelerated aging significantly reduced water sorption in the ML group. CONCLUSION. According to the tested material and 3D printer type, both 3D-printed and milled interim restoration resins showed higher flexural strength and modulus, and lower surface roughness than those prepared by the conventional method after accelerated aging.

통상적인 총의치 제작과정에서의 스캔 정보를 활용한 three-dimensional printed complete denture의 제작 (Three-dimensional printed complete denture fabrication using the scan data from the conventional denture-making process)

  • 김현민;김종진;이주희;차현석;백진
    • 구강회복응용과학지
    • /
    • 제36권3호
    • /
    • pp.196-202
    • /
    • 2020
  • 최근 three-dimensional (3D) printed denture가 완전 무치악 환자의 보철치료 시 선택할 수 있는 하나의 제작 방법으로 주목을 받고 있다. 그러나 아직까지 건강보험 총의치가 3D 프린팅 활용을 지원하지 않기 때문에 전통적인 방식만을 사용해야만 하며, 재제작이 필요할 경우 처음부터 제작과정을 반복해야 한다는 단점이 있다. 그러나 통상적인 의치 제작 과정 중 특정 단계들의 정보를 디지털 스캔하여 저장할 수 있고, 본 증례에서는 이 정보를 활용하여 통상적인 방식으로 제작된 첫번째 의치의 문제점을 보완한 새로운 의치를 3D 프린팅으로 완성하였다.

의료용 폴리머 소재를 활용한 3D 프린팅 인공치아용 사면체 비정질 카본 코팅 기술 연구 (A Study on the Tetrahedral Amorphous Carbon (ta-C) Coating on Medical Polymer Materials for 3D Printing Artificial Teeth)

  • 장영준;김종국;신창희;유성미
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.255-260
    • /
    • 2022
  • This research presents tetrahedral amorphous (ta-C) coating on the artificial tooth for improving the durability and functionality (esthtics, foreign body of tooth) by filtered cathodic vacuum arc (FCVA). A differentiated coating method is required for a ta-C coating on polymer owing to the low melting point of the polymer, inter-facial adhesion, low friction, and non-conductivity. Herein, ta-C coating is applied below 50℃, and the potential difference of the carbon plasma drawn to the substrate was controlled by applying a positive duct bias voltage without using a substrate bias voltage. Consequently, the ta-C coating with a thickness of 70nm using the duct bias condition of 20V with the highest plasma intensity satisfies the esthetics of the artificial tooth and had a 5B level of inter-facial adhesion. In addition, the composite hardness of ta-C/polymer is 380 MPa, and correlations with esthetics, sp3 bonding, and mechanical properties. The friction coefficient (CoF) of the ta-C coating in a water-lubricated environment is 0.07, showing a six-fold reduction in CoF compared with that of a polymer.