• 제목/요약/키워드: Medical 3D printing

검색결과 124건 처리시간 0.029초

Utility of three-dimensional printing in the surgical management of intra-articular distal humerus fractures: a systematic review and meta-analysis of randomized controlled trials

  • Vishnu Baburaj;Sandeep Patel;Vishal Kumar;Siddhartha Sharma;Mandeep Singh Dhillon
    • Clinics in Shoulder and Elbow
    • /
    • 제27권1호
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Clinical outcomes after fixation of distal humerus intraarticular fractures are directly related to the quality of reduction. The use of three-dimensional (3D)-printed fracture models can benefit preoperative planning to ensure good reduction. This review aims to determine if surgery performed with 3D printing assistance are faster and result in fewer complications and improved clinical outcomes than conventional methods. We also outline the benefits and drawbacks of this novel technique in surgical management of distal humerus fractures. Methods: A systematic literature search was carried out in various electronic databases. Search results were screened based on title and abstract. Data from eligible studies were extracted into spreadsheets. Meta-analysis was performed using appropriate computer software. Results: Three randomized controlled trials with 144 cases were included in the final analysis. The 3D-printed group had significantly shorter mean operating time (mean difference, 16.25 minutes; 95% confidence interval [CI], 12.74-19.76 minutes; P<0.001) and mean intraoperative blood loss (30.40 mL; 95% CI, 10.45-60.36 mL; P=0.005) compared with the conventional group. The 3D-printed group also tended to have fewer complications and a better likelihood of good or excellent outcomes as per the Mayo elbow performance score, but this did not reach statistical significance. Conclusions: Three-dimensional-printing-assisted surgery in distal humerus fractures has several benefits in reduced operating time and lower blood loss, indirectly decreasing other complications such as infection and anemia-related issues. Future good-quality studies are required to conclusively demonstrate the benefits of 3D printing in improving clinical outcomes.

3D프린팅 기술의 원전 적용을 위한 고찰 (Consideration for Application of 3D Printing Technology to Nuclear Power Plant)

  • 장경남;최성남;이성호
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.117-124
    • /
    • 2020
  • 3D printing is a technology that has significantly grown in recent years, particularly in the aerospace, defense, and medical sectors where it offers significant potential cost savings and reduction of the supply chain by allowing parts to be manufactured on-site rather than at a distance supplier. In nuclear industry, 3D printing technology should be applied according to the manufacturing trend change. For the application of 3D printing technology to the nuclear power plant, several problems, including the absence of code & standards of materials, processes and testing & inspection methods etc, should be solved. Preemptively, the improvement of reliability of 3D printing technology, including mechanical properties, structural performance, service performance and aging degradation of 3D printed parts should be supported. These results can be achieved by collaboration of many organizations such as institute, 3D printer manufacturer, metal powder supplier, nuclear part manufacturer, standard developing organization, and nuclear utility.

3D 프린팅 팬텀의 섬광카메라 적용 평가 (Evaluation of Scintillation Camera Applications of 3D Printing Phantom)

  • 박훈희;이주영;김지현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권4호
    • /
    • pp.343-350
    • /
    • 2021
  • 3D printing technology is an additive manufacturing technology produced through 3D scanning or modeling method. This technology can be produced in a short time without mold, which has recently been applied in earnest in various fields. In the medical field, 3D printing technology is used in various fields of radiology and radiation therapy, but related research is insufficient in the field of nuclear medicine. In this study, we compare the characteristics of traditional nuclear medicine phantom with 3D printing technology and evaluate its applicability in clinical trials. We manufactured the same size phantom of poly methyl meta acrylate(PMMA) and acrylonitrile butadiene styrene(ABS) based on the aluminum step wedge. We used BrightView XCT(Philips Health Care, Cleveland, USA) SPECT/CT. We acquired 60 min list mode for Aluminum, PMMA and ABS phantoms using Rectangular Flood Phantom (Biodex, New York, USA) 99mTcO4 3 mCi(111 MBq), 6 mCi (222MBq) and 57Co Flood phantom(adq, New Hampshire, USA). For the analysis of acquired images, the region of interest(ROI) were drawn and evaluated step by step for each phantom. Depending on the type of radioisotope and radiation dose, the counts of the ABS phantom was similar to that of the PMMA phantom. And as the step thickness increased, the counts decreased linearly. When comparing the linear attenuation coefficient of Aluminum, PMMA and ABS phantom, the linear attenuation coefficient of the aluminium phantom was higher than that of the others, and the PMMA and ABS phantom had similar the linear attenuation coefficient. Based on ABS phantom manufactured by 3D printing technology, as the thickness of the PMMA phantom increased, the counts and linear attenuation coefficient decreased linearly. It has been confirmed that ABS phantom is applicable in the clinical field of nuclear medicine. If the calibration factor is applied through further research, it is believed that practical application will be possible.

3D 프린팅 기술을 이용한 전산화단층영상 기반 조직 생검 보조기구 개발 (Development of Biopsy Assist Device on Computed Tomography Using 3D Printing Technology)

  • 김정완;성열훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권2호
    • /
    • pp.151-157
    • /
    • 2023
  • The purpose of this study was to develop an assist device that could correct and support patient position during biopsy on computed tomography (CT) using 3D printing technology. The development method was conducted in the order of 3D design, 3D output, intermediate evaluation for product, final assist device evaluation. The 3D design method was conducted in the order of prior research data survey, measurement, primary modeling, 3D printing, output evaluation, and supplementary modeling. The 3D output was the 3D printer (3DWOX 2X, Sindoh, Korea) with additive manufacturing technology and the polylactic acid (PLA) materials. At this time, the optimal strength was evaluated to infill degree of product as the 3D printing factors into 20%, 40%, 60%, and 80%. The intermediate evaluation and supplementation was measured noise in the region of interest (ROI) around the beam hardening artifact on the CT images. We used 128-channel MDCT (Discovery 75 HD, GE, USA) to scan with a slice thickness of 100 kVp, 150 mA, and 2.5 mm on the 3D printing product. We compared the surrounding noise of the final 3D printing product with the beginning of it. and then the strength of it according to the degree of infill was evaluated. As a result, the surrounding noise of the final and the early devices were measured at an average of 3.3 ± 0.5 HU and 7.1 ± 0.1 HU, respectively, which significantly reduced the noise of the final 3D printing product (p<0.001). We found that the percentage of infill according to the optimal strength was found to be 60%. Finally, development of assist devices for CT biopsy will be able to minimize artifacts and provide convenience to medical staff and patients.

PET/CT 팬텀의 3D 프린팅 소재 적용 가능성 평가 (Evaluation of the Applicability of PET/CT Phantom as a 3D Printing Material)

  • 이주영;김지현;박훈희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권5호
    • /
    • pp.423-431
    • /
    • 2022
  • The purpose of this study is to present objective information in applying 3D printing technology for PET/CT (Positron Emission Tomography/Computed Tomography) performance evaluation and use it as a basic research that can be applied to various purposes in the future. Phantoms were manufactured with step wedge of ABS(Acrylonitrile Butadiene Styrene) and ACR(Acrylic acid) material. The counts for each ROI(Region of Interest) were analyzed through image acquisition in PET/CT. And the variation rate of counts and CNR(Contrast Noise Ratio) was evaluated. In the counts analysis, the effect of thickness occurred. In addition, in the variation rate analysis, the thickness setting of steps wedge 4 to 5 levels should be considered first. These results minimize quantitative and qualitative changes in the phantom manufactured based on 3D printing, and enable more stable PET/CT performance evaluation. Based on 3D printing in PET/CT, various phantoms are expected to be produced in the future. If the characteristics of each material are considered and applied through the basic research such as this research, the result of the phantom manufactured through 3D printing can be more meaningful and will be used in a wide range.

텍스타일 스트럭처 원리와 연계된 3D 프린팅 개발 유형 분석 (Analysis of the Type of 3D Printing Development Linked with the Textile Structure Principle)

  • 김효진;김성달
    • 패션비즈니스
    • /
    • 제22권2호
    • /
    • pp.1-13
    • /
    • 2018
  • 3D printing technology, which is expected to play a leading role within the Fourth Industrial Revolution, is becoming distinguished not only in the space, automotive, medical and engineering industries, but also in the area of design. The fashion and textile structures created by 3D printing technology were classified into three types - basic structure, unified structure, and a new physical structure. When traditional weaving, knitting, and stitching was reinterpreted through 3D printing, there were apparent limitations in reproducing the characteristics of fabric structures due to differences in the materials and structures of traditional textiles. New physical structures are being developed to break away from merely reproducing traditional textile structures, and to bring out the characteristics of 3D printing technology. As examples of new physical structures, there are the kinematics structure which utilizes the hinge method, mesostructure cellular material, and the N12 disk structure. Such techniques potentially open a new paradigm of fashion and textile structures. Some innovative aspects of 3D printing technology may result in changes in the methods of collaboration, manufacturing, and distribution. Designers are receiving help from specialists of various backgrounds to merge 3D printing technology to create original works. Also, 3D printing not only makes personalized custom designs available, but shortens the distribution channels, foretelling a change within the fashion and textile industry.

의안 제작을 위한 광경화 방식 3D 프린터에 적용 가능한 소재 선정 및 장비 최적화를 위한 실험적 연구 (Optimization Research of 3D Printer Associated with Properties of Photocurable Resins for Ocular Prosthesis Producing)

  • 김소현;윤진숙;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권2호
    • /
    • pp.55-61
    • /
    • 2019
  • Recently, various researches on materials and equipment have been actively conducted to overcome the limitations of conventional output methods due to the increase of diversity of 3D printing materials and to adopt an output method suitable for the characteristics of each material. As the range applicable to outputable materials is expanded, manufacturing of medical devices applied to patients is in a more rapid growth trend than other fields. In this study, we investigated the suitable materials for fabricating 3D printer using photocurable resin. As a result, one suitable material was selected through biological safety experiment and thermal stability experiment. Next, to optimize the output of the selected materials, we have developed a system that optimizes the equipment according to the characteristics of the material. The results of this study enabled the implementation of personalized medical implants that could not be made from 3D printer dependent materials, thereby overcoming the limitations of existing 3D printer output conditions and dedicated materials.

3D프린팅이 사회·경제에 미치는 영향에 관한 연구 (A Study on the socio-economic impact of 3D Printing)

  • 김현창
    • 디지털융복합연구
    • /
    • 제13권7호
    • /
    • pp.23-31
    • /
    • 2015
  • 새로운 산업혁명을 일으킬 기술로 주목받고 있는 3D프린팅은 주요 프린팅 방식에 대한 특허가 만료되면서 우리나라 정부는 물론, 산업계에서 큰 관심을 받고 있다. 이러한 상황에서 3D프린팅 산업의 긍정적 발전을 위해 3D프린팅 확산에 따라 예상되는 사회 경제적 측면의 부정적 영향을 고찰하고 이의 극복방안을 도출하고자 한다. 기존 연구논문, 정책보고서, 보도자료 등 다양한 자료 분석을 토대로 부정적 영향과 이에 대한 대응방안을 제시하였는데, 3D프린팅의 확산에 따라 예상되는 주요 문제로는 3D프린팅으로 출력되는 무기류 등으로 인한 프린팅 범죄, 특허권 상표권 디자인권 등에 대한 지식재산권 침해 문제, 금형 의료 등 다양한 분야에서의 3D프린팅 활용에 따른 기존 산업 및 종사 인력에 대한 피해, 도면과 소재만 있으면 누구나 제작 가능한 3D프린팅의 특성에 따라 발생 가능한 제조물 책임 및 윤리 문제, 플라스틱 소재 사용의 증가 등에 따른 환경오염의 문제, 정부의 비효율적 투자 가능성 등이다. 사안에 따라 상이하지만 부정적 영향에 대비할 수 있는 법 제도의 정비와 산업 및 기술적 측면의 가이드라인 마련이 시급하며, 3D프린팅 산업 육성을 위해 중장기 미래 비전에 근거한 정부의 효율적인 투자가 요구된다.

인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가 (Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology)

  • 조용인
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권3호
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

3D프린팅 활용 생체의료분야 기술동향 (Current Status of Biomedical Applications using 3D Printing Technology)

  • 박석희;박진호;이혜진;이낙규
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1067-1076
    • /
    • 2014
  • To date, biomedical application of three-dimensional (3D) printing technology remains one of the most important research topics and business targets. A wide range of approaches have been attempted using various 3D printing systems with general materials and specific biomaterials. In this review, we provide a brief overview of the biomedical applications using 3D printing techniques, such as surgical tool, medical device, prosthesis, and tissue engineering scaffold. Compared to the other applications of 3D printed products, the scaffold fabrication should be performed with careful selection of bio-functional materials. In particular, we describe how the biomaterials can be processed into 3D printed scaffold and applied to tissue engineering area.