DOI QR코드

DOI QR Code

Utility of three-dimensional printing in the surgical management of intra-articular distal humerus fractures: a systematic review and meta-analysis of randomized controlled trials

  • Vishnu Baburaj (Department of Orthopedics, Postgraduate Institute of Medical Education and Research) ;
  • Sandeep Patel (Department of Orthopedics, Postgraduate Institute of Medical Education and Research) ;
  • Vishal Kumar (Department of Orthopedics, Postgraduate Institute of Medical Education and Research) ;
  • Siddhartha Sharma (Department of Orthopedics, Postgraduate Institute of Medical Education and Research) ;
  • Mandeep Singh Dhillon (Department of Orthopedics, Postgraduate Institute of Medical Education and Research)
  • Received : 2023.07.02
  • Accepted : 2023.10.21
  • Published : 2024.03.01

Abstract

Background: Clinical outcomes after fixation of distal humerus intraarticular fractures are directly related to the quality of reduction. The use of three-dimensional (3D)-printed fracture models can benefit preoperative planning to ensure good reduction. This review aims to determine if surgery performed with 3D printing assistance are faster and result in fewer complications and improved clinical outcomes than conventional methods. We also outline the benefits and drawbacks of this novel technique in surgical management of distal humerus fractures. Methods: A systematic literature search was carried out in various electronic databases. Search results were screened based on title and abstract. Data from eligible studies were extracted into spreadsheets. Meta-analysis was performed using appropriate computer software. Results: Three randomized controlled trials with 144 cases were included in the final analysis. The 3D-printed group had significantly shorter mean operating time (mean difference, 16.25 minutes; 95% confidence interval [CI], 12.74-19.76 minutes; P<0.001) and mean intraoperative blood loss (30.40 mL; 95% CI, 10.45-60.36 mL; P=0.005) compared with the conventional group. The 3D-printed group also tended to have fewer complications and a better likelihood of good or excellent outcomes as per the Mayo elbow performance score, but this did not reach statistical significance. Conclusions: Three-dimensional-printing-assisted surgery in distal humerus fractures has several benefits in reduced operating time and lower blood loss, indirectly decreasing other complications such as infection and anemia-related issues. Future good-quality studies are required to conclusively demonstrate the benefits of 3D printing in improving clinical outcomes.

Keywords

References

  1. Bergdahl C, Ekholm C, Wennergren D, Nilsson F, Moller M. Epidemiology and patho-anatomical pattern of 2,011 humeral fractures: data from the Swedish Fracture Register. BMC Musculoskelet Disord 2016;17:159. 
  2. Robinson CM, Hill RM, Jacobs N, Dall G, Court-Brown CM. Adult distal humeral metaphyseal fractures: epidemiology and results of treatment. J Orthop Trauma 2003;17:38-47. 
  3. Gupta R, Khanchandani P. Intercondylar fractures of the distal humerus in adults: a critical analysis of 55 cases. Injury 2002;33:511-5. 
  4. Villar RN, Marsh D, Rushton N, Greatorex RA. Three years after Colles' fracture: a prospective review. J Bone Joint Surg Br 1987;69:635-8. 
  5. Jeong HS, Park KJ, Kil KM, et al. Minimally invasive plate osteosynthesis using 3D printing for shaft fractures of clavicles: technical note. Arch Orthop Trauma Surg 2014;134:1551-5. 
  6. Baburaj V, Patel S, Kumar V, Dhillon MS. Utility of 3D printing in the surgical management of intra-articular distal humerus fractures: a protocol for systematic review and meta-analysis. medRxiv [Preprint]. 2022 [cited 2023 Nov 1]. https://doi.org/10.1101/2022.01.25.22269836. 
  7. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898. 
  8. Shuang F, Hu W, Shao Y, Li H, Zou H. Treatment of intercondylar humeral fractures with 3D-printed osteosynthesis plates. Medicine (Baltimore) 2016;95:e2461. 
  9. Yang L, Grottkau B, He Z, Ye C. Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop 2017;41:2381-7. 
  10. Zheng W, Su J, Cai L, et al. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res 2018;104:83-8. 
  11. Xie L, Chen C, Zhang Y, Zheng W, Chen H, Cai L. Three-dimensional printing assisted ORIF versus conventional ORIF for tibial plateau fractures: a systematic review and meta-analysis. Int J Surg 2018;57:35-44. 
  12. Cao J, Zhu H, Gao C. A systematic review and meta-analysis of 3D printing technology for the treatment of acetabular fractures. Biomed Res Int 2021;2021:5018791. 
  13. Bai J, Wang Y, Zhang P, et al. Efficacy and safety of 3D print-assisted surgery for the treatment of pilon fractures: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2018;13:283. 
  14. Li K, Liu Z, Li X, Wang J. 3D printing-assisted surgery for proximal humerus fractures: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2022;48:3493-503. 
  15. Dos Santos-Vaquinhas A, Lopez-Torres II, Matas-Diez JA, Calvo-Haro JA, Vaquero J, Sanz-Ruiz P. Improvement of surgical time and functional results after do-it-yourself 3D-printed model preoperative planning in acetabular defects Paprosky IIA-IIIB. Orthop Traumatol Surg Res 2022;108:103277. 
  16. You W, Liu LJ, Chen HX, et al. Application of 3D printing technology on the treatment of complex proximal humeral fractures (Neer3-part and 4-part) in old people. Orthop Traumatol Surg Res 2016;102:897-903. 
  17. Cheng H, Clymer JW, Po-Han Chen B, et al. Prolonged operative duration is associated with complications: a systematic review and meta-analysis. J Surg Res 2018;229:134-44.