• 제목/요약/키워드: Mediated electron transfer

검색결과 31건 처리시간 0.024초

Mercury Ions Mediated Phosphorus Containing Carbon Dots as Fluorescent Probe for Biothiols Screening

  • Du, Han;Xu, Hu;Zhao, Yun;Li, Dan;Wang, Yuhong
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850116.1-1850116.14
    • /
    • 2018
  • In this study, we report the mercury ions ($Hg^{2+}$) mediated phosphorus-containing carbon dots (PCDs) as a selective "off-on" fluorescence probe for glutathione (GSH), cysteine (Cys) and homocysteine (Hcys). PCDs obtained by hydrothermal reaction are sensitive to $Hg^{2+}$ ions and its fluorescence can be significantly quenched owing to the electron transfer from the lowest unoccupied molecular orbital (LUMO) of PCDs to $Hg^{2+}$. Interestingly, the weak fluorescence of $Hg^{2+}$-mediated PCDs could be gradually recovered with the addition of GSH, Cys and Hcys. This can be attributed to the formation of $Hg^{2+}-S$ complex due to the super affinity of $Hg^{2+}$-sulfydryl bond. The formation of $Hg^{2+}-S$ complex extremely reduces the oxidation ability of $Hg^{2+}$ that inhibits the electron transfer from LUMO of PCDs to $Hg^{2+}$ and re-opens the native electron transition from LUMO to the highest occupied molecular orbital (HOMO) of PCDs. Thus, the green fluorescence of PCDs is switched on. Furthermore, the present $Hg^{2+}$-mediated PCDs assay exhibits a high selectivity for GSH, Cys and Hcy and has been successfully used to detect the total biothiols content in human urine samples.

Photochemical Property and Photodynamic Activity of Tetrakis(2-naphthyl) Porphyrin Phosphorus(V) Complex

  • Hirakawa, Kazutaka;Aoki, Shunsuke;Ueda, Hiroyuki;Ouyang, Dongyan;Okazaki, Shigetoshi
    • Rapid Communication in Photoscience
    • /
    • 제4권2호
    • /
    • pp.37-40
    • /
    • 2015
  • To examine the photosensitized biomolecules damaging activity, dimethoxyP(V)tetrakis(2-naphthyl)porphyrin (NP) and dimethoxyP(V)tetraphenylporphyrin (PP) were synthesized. The naphthyl moiety of NP hardly deactivated the photoexcited P(V)porphyrin ring in ethanol. In aqueous solution, the naphthyl moiety showed the quenching effect on the photoexcited porphyrin ring, possibly through electron transfer and self-quenching by a molecular association. Binding interaction between human serum albumin (HSA), a water soluble protein, and these porphyrins could be confirmed by the absorption spectral change. The apparent association constant of NP was larger than that of PP. It is explained by that more hydrophobic NP can easily bind into the hydrophobic pockets of HSA. The photoexcited PP effectively induced damage of the tryptophan residue of HSA, through electron transfer-mediated oxidation and singlet oxygen generation. NP also induced HSA damage during photo-irradiation and the contributions of the electron transfer and singlet oxygen mechanisms were speculated. The electron transfer-mediated mechanism to the photosensitized protein damage should be advantageous for photodynamic therapy in hypoxic condition. The quantum yield of the HSA photodamage by PP was significantly larger than that of NP. The quenching effect of the naphthyl moiety is considered to suppress the photosensitized protein damage. In conclusion, the naphthalene substitution to the P(V)porphyrins can enhance the binding interaction with hydrophobic biomacromolecules such as protein, however, this substitution may reduce the photodynamic effect of P(V)porphyrin ring in aqueous media.

Fabrication of Single Crystal Poly (3,4-ethylenedioxythiophene) Nanowire Arrays by Vapor Phase Polymerization with Liquid-bridge-mediated Nanotransfer Molding

  • 이기석;조보람;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.372-372
    • /
    • 2012
  • We have studied a fabrication of Poly (3,4-ethylenedioxythiophene) (PEDOT) wire arrays and structures with various feature sizes from hundreds micrometers to tens nanometers. PEDOT is well-known as a conducting material, can be grown by a vapor pressure polymerization (VPP) method. The VPP technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Bioelectrocatalyzed Signal Amplification for Affinity Interactions at Chemically Modified Electrodes

  • Hyun C. Yoon;Kim, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.107-111
    • /
    • 2004
  • A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amidoamine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.

Investigation of Direct and Mediated Electron Transfer of Laccase-Based Biocathode

  • Jamshidinia, Zhila;Mashayekhimazar, Fariba;Ahmadi, Masomeh;Molaeirad, Ahmad;Alijanianzadeh, Mahdi;Janfaza, Sajad
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Enzymatic fuel cells are promising low cost, compact and flexible energy resources. The basis of enzymatic fuel cells is transfer of electron from enzyme to the electrode surface and vice versa. Electron transfer is done either by direct or mediated electron transfer (DET/MET), each one having its own advantages and disadvantages. In this study, the DET and MET of laccase-based biocathodes are compared with each other. The DET of laccase enzyme has been studied using two methods; assemble of needle-like carbon nanotubes (CNTs) on the electrode, and CNTs/Nafion polymer. MET of laccase enzyme also is done by use of ceramic electrode containing, ABTS (2,2'-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid]) /sol-gel. Cyclic voltammetric results of DET showed a pair of well-defined redox peaks at $200{\mu}A$ and $170{\mu}A$ in a solution containing 5and $10{\mu}M$ o-dianisidine as a substrate for needle-like assembled CNTs and CNTs-Nafion composite respectively. In MET method using sol-gel/ABTS, the maximum redox peak was $14{\mu}A$ in the presence of 15 M solution o-dianisidine as substrate. The cyclic voltammetric results showed that laccase immobilization on needle-like assembled CNTs or CNTs-Nafion is more efficient than the sol-gel/ABTS electrode. Therefore, the expressed methods can be used to fabricate biocathode of biofuel cells or laccase based biosensors.

Electrochemical Characteristics of Water-Soluble Phosphate-Functionalized Naphthalene- and Perylene-Bisimides and Their Zirconium Bisphosphate Multilayers on ITO Electrode

  • Cho, Kwang Je;Kim, Yeong Il;Shim, Hyun Kwan
    • 대한화학회지
    • /
    • 제63권1호
    • /
    • pp.37-44
    • /
    • 2019
  • N,N'-bis(ethyldihydrogen phosphate)-1,4,5,8-naphthalene bis(dicarboximide) (EPNI) and N,N'-bis(ethyldihydrogen phosphate)-3,4,9,10-perylene bis(dicarboximide) (EPPI) and their zirconium bisphosphate multilayers (Zr-EPNI and Zr-EPPI), that had been briefly reported by us, were further investigated in terms of their electrochemical properties. EPNI in aqueous solution showed typical two reversible reductions at ITO electrode but the reductions were strongly dependent on solution pH while EPPI showed only an irreversible reduction. The single and mixed multilayers of Zr-EPNI and Zr-EPPI were well constructed on ITO electrode by the alternate adsorptions of zirconium ion and the bisimides. While Zr-EPNI multilayer on ITO electrode showed single broad reversible reduction with $E_{1/2}=-0.68V$, Zr-EPPI gave two separated reductions at $E_{1/2}=-0.54$ and -0.81 V vs SCE, quite differently from the solution properties. The average layer densities of the multilayers were estimated as $1.5{\times}10^{-10}$ and $2.3{\times}10^{-10}mol/cm^2$ for Zr-EPNI and Zr-EPPI, respectively. Both the monolayers of Zr-EPNI and Zr-EPPI could not completely block the electron transfer between $Fe(CN){_6}^{3-}$ in solution and ITO electrode but 3-5 layers of Zr-EPNI and Zr-EPPI could block it completely and mediated the one-way electron transfer at the potential shifted to their reduction potentials. When the monolayer of zirconium 1,10-decanediylbisphosphonate (Zr-DBP) was used as a sublayer of Zr-EPNI and Zr-EPPI layers, the mediated electron transfer became prominent without any direct electron transfer.

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Liquid Bridge -Mediated Nanotransfer Molding : A New Direct Printing Method

  • 당정미;조보람;오현석;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.85-85
    • /
    • 2010
  • We report a new direct printing method, called liquid-mediated nanotransfer molding (LB-nTM), that uses a polar liquid-mediated transfer process. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid- bridge between the stamp and the substrate. This procedure can be adopted in automated printing machines that generate various material patterns with a wide range of feature sizes (as small as 60 nm) on diverse substrates. The patterns have been investigated by scanning electron microscopy(SEM).

  • PDF

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF