DOI QR코드

DOI QR Code

Photochemical Property and Photodynamic Activity of Tetrakis(2-naphthyl) Porphyrin Phosphorus(V) Complex

  • Hirakawa, Kazutaka (Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University) ;
  • Aoki, Shunsuke (Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University) ;
  • Ueda, Hiroyuki (Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University) ;
  • Ouyang, Dongyan (Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University) ;
  • Okazaki, Shigetoshi (Medical Photonics Research Center, Hamamatsu University School of Medicine)
  • Received : 2015.06.24
  • Accepted : 2015.06.27
  • Published : 2015.06.30

Abstract

To examine the photosensitized biomolecules damaging activity, dimethoxyP(V)tetrakis(2-naphthyl)porphyrin (NP) and dimethoxyP(V)tetraphenylporphyrin (PP) were synthesized. The naphthyl moiety of NP hardly deactivated the photoexcited P(V)porphyrin ring in ethanol. In aqueous solution, the naphthyl moiety showed the quenching effect on the photoexcited porphyrin ring, possibly through electron transfer and self-quenching by a molecular association. Binding interaction between human serum albumin (HSA), a water soluble protein, and these porphyrins could be confirmed by the absorption spectral change. The apparent association constant of NP was larger than that of PP. It is explained by that more hydrophobic NP can easily bind into the hydrophobic pockets of HSA. The photoexcited PP effectively induced damage of the tryptophan residue of HSA, through electron transfer-mediated oxidation and singlet oxygen generation. NP also induced HSA damage during photo-irradiation and the contributions of the electron transfer and singlet oxygen mechanisms were speculated. The electron transfer-mediated mechanism to the photosensitized protein damage should be advantageous for photodynamic therapy in hypoxic condition. The quantum yield of the HSA photodamage by PP was significantly larger than that of NP. The quenching effect of the naphthyl moiety is considered to suppress the photosensitized protein damage. In conclusion, the naphthalene substitution to the P(V)porphyrins can enhance the binding interaction with hydrophobic biomacromolecules such as protein, however, this substitution may reduce the photodynamic effect of P(V)porphyrin ring in aqueous media.

Keywords

References

  1. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380-387. https://doi.org/10.1038/nrc1071
  2. Castano, A. P.; Mroz, P.; Hamblin, M. R. Nat. Rev. Cancer 2006, 6, 535-545. https://doi.org/10.1038/nrc1894
  3. Wilson, B. C.; Patterson, M. S. Phys. Med. Biol. 2008, 53, R61-R109. https://doi.org/10.1088/0031-9155/53/9/R01
  4. Bratasz, A.; Kulkarni, A C; Kuppusamy, P. Biophys. J 2007, 92,2918-2925. https://doi.org/10.1529/biophysj.106.099135
  5. Peskin, B. S.; Carter, M. J. Medical Hypotheses, 2008, 70, 298-304. https://doi.org/10.1016/j.mehy.2007.05.033
  6. Hirakawa, K.; Fukunaga, N.; Nishimura, Y.; Arai, T.; Okazaki, S. Bioorg. Med. Chem. Lett. 2013, 23, 2704-2707. https://doi.org/10.1016/j.bmcl.2013.02.081
  7. Hirakawa, K.; Umemoto, H.; Kikuchi, R.; Yamaguchi, H.; Nishimura, Y.; Arai, T.; Okazaki, S.; Segawa, H. Chem. Res. Toxicol. 2015, 28, 262-267.
  8. Susumu, K.; Kunimoto, K.; Segawa, H.; Shimidzu, T. J Phys. Chem. 1995, 99, 29-34. https://doi.org/10.1021/j100001a006
  9. He, X. M.; Carter, D. C. Nature 1992, 358, 209-215. https://doi.org/10.1038/358209a0
  10. Usui, Y; Kamogawa, K. Photochem. PhotobioI. 1974, 19, 245-247. https://doi.org/10.1111/j.1751-1097.1974.tb06506.x
  11. Krasnovsky Jr., A. A. J. Photochem. PhotobioI. A: Chem. 2008, 196, 210-218. https://doi.org/10.1016/j.jphotochem.2007.12.015
  12. Ehrenshaft, M.; Silva, S. O.; Perdivara, I.; Bilski, P.; Sik, R. H.; Chignell, C. F.; Tomer, K. E.; Mason, R. P. Free Rad. BioI. Med. 2009, 4, 1260-1266.
  13. Thomas, A. H.; Serrano, M. P; Rahal, V.; Vicendo, P.; Claparols, C.; Oliveros, E.; Lorente, C. Free Rad. BioI. Med. 2013, 63, 467-475. https://doi.org/10.1016/j.freeradbiomed.2013.05.044
  14. Li, M. Y.; Cline, C. S.; Koker, E. B.; Carmichael, H. H.; Chigneil, C. F; Bilski, P. Photochem. Photobiol. 2001, 74, 760-764. https://doi.org/10.1562/0031-8655(2001)074<0760:QOSMOO>2.0.CO;2
  15. Habour, J. R.; Issler, S. L. J. Am. Chem. Soc. 1982, 104, 903-905. https://doi.org/10.1021/ja00367a066
  16. Hirakawa, K.; Kawanishi, S.; Hirano, T.; Segawa, H. J. Photochem. Photobiol. B: Biol. 2007, 87, 209-217. https://doi.org/10.1016/j.jphotobiol.2007.04.001
  17. Nan, C. G.; Feng, Z. Z.; Li, W. X.; Ping, D. J.; Qin, C. H. Analytica Chimica Acta 2002, 452, 245-254. https://doi.org/10.1016/S0003-2670(01)01470-2
  18. Hirakawa, K.; Segawa, H. Photochem. PhotobioI. Sci. 2010, 9, 704-709. https://doi.org/10.1039/b9pp00204a
  19. Hirakawa, K.; Segawa, H. J. Photochem. PhotobioI. A: Chem. 1999, 123, 67-76. https://doi.org/10.1016/S1010-6030(99)00043-X