• Title/Summary/Keyword: Media Flow

Search Result 944, Processing Time 0.025 seconds

The Effect of Micro-Pore Configuration on the Flow and Thermal Fields of Supercritical CO2

  • Choi, Hang-Seok;Park, Hoon-Chae;Choi, Yeon-Seok
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • Currently, the technology of $CO_2$ capture and storage (CCS) has become the main issue for climate change and global warming. Among CCS technologies, the prediction of $CO_2$ behavior underground is very critical for $CO_2$ storage design, especially for its safety. Hence, the purpose of this paper is to model and simulate $CO_2$ flow and its heat transfer characteristics in a storage site, for more accurate evaluation of the safety for $CO_2$ storage process. In the present study, as part of the storage design, a micro pore-scale model was developed to mimic real porous structure, and computational fluid dynamics was applied to calculate the $CO_2$ flow and thermal fields in the micro pore-scale porous structure. Three different configurations of 3-dimensional (3D) micro-pore structures were developed, and compared. In particular, the technique of assigning random pore size in 3D porous media was considered. For the computation, physical conditions such as temperature and pressure were set up, equivalent to the underground condition at which the $CO_2$ fluid was injected. From the results, the characteristics of the flow and thermal fields of $CO_2$ were scrutinized, and the influence of the configuration of the micro-pore structure on the flow and scalar transport was investigated.

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

A Study on the Influence of System Quality and Synchronization Factors for Learning Performance in e-Learning: The Mediating Effect of Learning Flow (e-러닝의 시스템품질과 동기화요인이 학업성과에 미치는 영향에 관한 연구 : 학습몰입의 매개효과를 중심으로)

  • Kim, Youn-Ae;Shin, Ho-Kyun;Kim, Joon-Woo
    • The Journal of Information Systems
    • /
    • v.20 no.4
    • /
    • pp.181-204
    • /
    • 2011
  • Recently, the development of ICT(information & communications technology) with the advent of new media paradigm shift in learning has brought a dramatic impact on the competitiveness of universities. The previous studies on the academic performance of e-learning mainly targeted on e-learning users, studying additional synchronization and system quality factors to measure academic performance. This study empirically analyzed the learning flow and academic performance considering both DeLone & McLean model system quality and synchronizing factors based on ARCS model. Relating to quality and synchronization factors, the academic performance of e-learning system was tested, and the difference between learning flow and academic performance was also analyzed based on time-series data, by the test difference(in the beginning, during, and final of the semester). The results of the study are as follows. First, the study shows that both system quality and synchronization directly affected the learning performance. Thus, when designing e-learning system, it is necessary to consider these two factors at the same time. Second, the indirectly mediating effect on the system quality and synchronization factors turned out to be significant in learning flow. Third, the result of regression analysis on the contents of utilizing dummy variable presents that the teacher's explanation has greater influence than multimedia has to the academic performance, and furthermore, the test difference showed no significance. Further research should be undertaken to consider the learner's degree of acceptance which reflects various aspects for building m-learning or u-learning.

A Study of Probabilistic Groundwater Flow Modeling Considering the Uncertainty of Hydraulic Conductivity (수리전도도의 불확실성을 고려한 확률론적 지하수 유동해석에 관한 연구)

  • Ryu Dong-Woo;Son Bong-Ki;Song Won-Kyong;Joo Kwang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.145-156
    • /
    • 2005
  • MODFLOW, 3-D finite difference code, is widely used to model groundwater flow and has been used to assess the effect of excavations on the groundwater system due to construction of subways and mountain tunnels. The results of numerical analysis depend on boundary conditions, initial conditions, conceptual models and hydrogeological properties. Therefore, its accuracy can only be enhanced using more realistic and field oriented input parameters. In this study, SA(simulated annealing) was used to integrate hydraulic conductivities from a few of injection tests with geophysical reference images. The realizations of hydraulic conductivity random field are obtained and then groundwater flows in each geostatistically equivalent media are analyzed with a numerical simulation. This approach can give probabilistic results of groundwater flow modeling considering the uncertainty of hydrogeological medium. In other words, this approach makes it possible to quantify the propagation of uncertainty of hydraulic conductivities into groundwater flow.

5D Light Field Synthesis from a Monocular Video (단안 비디오로부터의 5차원 라이트필드 비디오 합성)

  • Bae, Kyuho;Ivan, Andre;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.755-764
    • /
    • 2019
  • Currently commercially available light field cameras are difficult to acquire 5D light field video since it can only acquire the still images or high price of the device. In order to solve these problems, we propose a deep learning based method for synthesizing the light field video from monocular video. To solve the problem of obtaining the light field video training data, we use UnrealCV to acquire synthetic light field data by realistic rendering of 3D graphic scene and use it for training. The proposed deep running framework synthesizes the light field video with each sub-aperture image (SAI) of $9{\times}9$ from the input monocular video. The proposed network consists of a network for predicting the appearance flow from the input image converted to the luminance image, and a network for predicting the optical flow between the adjacent light field video frames obtained from the appearance flow.

Theoretical model for the shear strength of rock discontinuities with non-associated flow laws

  • Galindo, Ruben;Andres, Jose L.;Lara, Antonio;Xu, Bin;Cao, Zhigang;Cai, Yuanqiang
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.307-321
    • /
    • 2021
  • In an earlier publication (Serrano et al. 2014), the theoretical basis for evaluating the shear strength in rock joints was presented and used to derive an equation that governs the relationship between tangential and normal stresses on the joint during slippage between the joint faces. In this paper, the theoretical equation is applied to two non-linear failure criteria by using non-associated flow laws, including the modified Hoek and Brown and modified Mohr-Coulomb equations. The theoretical model considers the geometric dilatancy, the instantaneous friction angle, and a parameter that considers joint surface roughness as dependent variables. This model uses a similar equation structure to the empirical law that was proposed by Barton in 1973. However, a good correlation with the empirical values and, therefore, Barton's equation is necessary to incorporate a non-associated flow law that governs breakage processes in rock masses and becomes more significant in highly fractured media, which can be induced in a rock joint. A linear law of dilatancy is used to assess the importance of the non-associated flow to obtain very close values for different roughness states, so the best results are obtained for null material dilatancy, which considers significant changes that correspond to soft rock masses or altered zones of weakness.

Development of Valuation Framework for Estimating the Market Value of Media Contents (미디어 콘텐츠의 시장가치 산정을 위한 가치평가 프레임워크 개발)

  • Sung, Tae-Eung;Park, Hyun-Woo
    • Journal of Service Research and Studies
    • /
    • v.6 no.3
    • /
    • pp.29-40
    • /
    • 2016
  • Since the late 20th century, there has been much effort to improve the market value of media contents which are commercialized in a digital format, by fusing digital data of video, audio, numerals, characters with IT technology together. Then by what criteria and methodologies could the market value for the drama "Sons of the Sun" or the animated film 'Frozen', often referred to in the meida, be estimated? In the circumstances there has been little or no research on the valuation framework of media contents and the status of their valuation system development to date, we propose a practical valuation models for various purposes such as contents trading, review of investment adequacy, etc., by formalizing and presenting a contents valuation framework for the four types of media of movies, online games, and broadcasting commercials, and animations. Therefore, we develope computational methods of cash flows which includes production cost by media content types, provide reference databases associated with key variables of valuation (economic life cycle, discount rates, contents contribution and royalty rates), and finally propose the valuation framework of media contents based on both income approach and relief-from-royalty method which has been applied to valuation of intangible assets so far.

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF

A Novel Rate Control for Improving the QoE of Multimedia Streaming Service in the Internet Congestion (인터넷 혼잡상황에서 멀티미디어 스트리밍 서비스의 QoE 향상을 위한 전송률 제어기법)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.6
    • /
    • pp.492-504
    • /
    • 2009
  • The delivery of multimedia that efficiently adapts its bit-rate to changing network characteristics and conditions is one of the important challenging tasks in the design of today's real-time multimedia streaming systems such as IPTV, Mobile IPTV and so on. In these work, the primary focus is on network congestion, to improve network stability and inter-protocol fairness. However, these existing works have problems which do not support QoE (Quality of Experience), because they did not consider essential characteristics of contents playback such as the media continuity. In this paper, we propose a novel rate control scheme for improving the QoE of multimedia streaming service in the Internet congestion, called NCAR (Network and Client-Aware Rate control), which is based on network-aware congestion control and client-aware flow control scheme. Network-aware congestion control of the NCAR offers an improving reliability and fairness of multimedia streaming, and reduces the rate oscillation as well as keeping high link utilization. Client-aware flow control of NCAR offers a removing the media discontinuity and a suitable receiver buffer allocation, and provides a good combination of low playback delay. Simulation results demonstrate the effectiveness of our proposed schemes.

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.