• Title/Summary/Keyword: Mechanochemical Process

Search Result 61, Processing Time 0.029 seconds

Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries (5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구)

  • Jeon, Sang-Hoon;Oh, Si-Hyoung;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.172-176
    • /
    • 2005
  • Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.

A Study on the Fabrication of Sub-Micro Mold for PDMS Replica Molding Process by Using Hyperfine Mechanochemical Machining Technique (기계화학적 극미세 가공기술을 이용한 PDMS 복제몰딩 공정용 서브마이크로 몰드 제작에 관한 연구)

  • 윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.351-354
    • /
    • 2004
  • This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45$^{\circ}$) on the deformation behavior and etching characteristic of silicon material were investigated.

  • PDF

Initial Sintering Behaviour of the Powder Injection Molded W-15wt%Cu Nanocomposite Powder (분말사출성형한 W-l5wt%Cu 나노복합분말의 초기소결거동)

  • 윤의식;유지훈;이재성
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.258-264
    • /
    • 1998
  • The initial sintering behaviour of the powder injection molded (PIMed) W-l5wt%Cu nanocomposite powder was investigated. The W-Cu nanocomposite powder was produced by the mechanochemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-CuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 hours in hydrogen at mosphere. The sintering behaviour was examined and discussed in terms of microstructural developments such as W-Cu aggregate formation, pore size distribution and W grain growth. The volume shrinkage of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast local densification in the PIM. Remarkable decrease of carbon and oxygen in the PIM enhanced local densification in the early stage of solid state sintering process with eliminating very fine pores less than 10 nm. In addition, such local densiflcation in the PIM is presumably responsible for mitigating of W-grain growth in the initial stage.

  • PDF

Microstructure and Sintering Behavior of W-15 wt%Cu Nanocomposite Powder Prepared from W-CuO Mixture (W-CuO 혼합물을 이용하여 제조된 W-Cu나노복합분말의 미세구조와 소결거동에 관한 연구)

  • 김길수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.270-274
    • /
    • 2003
  • Recently, the fabrication process of W-Cu nanocomposite powders has been researched to improve the sinterability by mechanochemical process (MCP), which consists of ball milling and hydrogen-reduction with W- and Cu-oxide mixture. However, there are many control variables in this process because the W oxides are hydrogen-reduced via several reduction stages at high temperature over 80$0^{\circ}C$ with susceptive reduction conditions. In this experiment, the W-15 wt%Cu nanocomposite powder was fabricated with the ball-milling and hydrogen-reduction process using W and CuO powder. The microstructure of the fabricated W-Cu nanocomposite powder was homogeneously composed of the fine W particles embedded in the Cu matrix. In the sintering process, the solid state sintering was certainly observed around 85$0^{\circ}C$ at the heating rate of 1$0^{\circ}C$/min. It is considered that the solid state sintering at low temperature range should occur as a result of the sintering of Cu phase between aggregates. The specimen was fully densified over 98% for theoretical density at 120$0^{\circ}C$ for 1 h with the heating rate of 1$0^{\circ}C$/min.

Synthesis of ferromagnetic Sm-Fe-N powders subjected to mechanochemical reaction (Mechanochemical Reaction에 의한 Sm-Fe-N계 자성분말의 합성)

  • 이충효;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.292-296
    • /
    • 2000
  • Mechenochemical reaction by planetary type ball mill is applied to prepare $Sm_2$$Fe_{17}$$N_{x}$ permanent magnet powders. Starting from pure samarium and iron powders, the formation process of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ phase by ball milling and a subsequent solid state reaction were studied. At as-milled stage powders were found to consist of amorphous Sm-Fe and $\alpha$-Fe phases in all composition of $Sm_2$$Fe_{100-x}$(x = 11, 13, 15). The dependence of starting composition of elemental powder on the formation of Sm-Fe intermetallic compound was investigated by heat treatment of as-milled powders. When Sm concentration was 15 at%, heat-treated powder consists of mostly $Sm_2$$Fe_{17}$$N_{x}$single phase. For synthesizing of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ compound, additional nitriding treatment was carried out under $N_2$gas atmosphere at $450^{\circ}C$. The increase in the coercivity and remanence was parallel to the nitrogen content which increased drastically at first and then gradually as the nitriding time was extended. The ball-milled Sm-Fe-N powders were expected to be prospective materials for synthesizing of permanent magnet with high performance.

  • PDF

Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution (폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수)

  • Lee, Jaesung;Kim, Mingoo;Kim, Seulgi;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.497-501
    • /
    • 2021
  • Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

A Study on the Performance Evaluation of End Mill Tool Fabricated by Ultra-Fine WC (초미립 WC 소재 엔드밀 공구의 성능 평가에 관한 연구)

  • Kim, Do-Hyoung;Woo, Yong-Won;Lee, Hyun-Ho;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • The ultra-fine tungsten carbide(WC) powders have been actively used in the cemented carbides industry, because they have excellent mechanical properties such as high hardness, strength, and toughness. In this study, ultra-fine WC-Co alloys powders have been fabricated by thermochemical and thermomechanical process such as spray conversion process or high energy ball milling. The non-coated end-mill which is made of ultra-fine tungsten carbide is investigated by measuring cutting force, tool wear, tool life, and surface roughness profile according to cutting length. The machining test was conducted with high hardened workpiece and their performances are investigated in high speed cutting conditions. Also, the relationship between the machining characteristics and the Co contents are investigated under various high speed cutting conditions.

Influence of Oxidation Temperatures on the Structure and the Microstructure of GaN MOCVD Scraps (MOCVD 공정 중 발생한 GaN 분말 scrap에 대한 대기 산화가 결정조직과 미세조직에 미치는 영향)

  • Hong, Hyun Seon;Ahn, Joong Woo
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.278-282
    • /
    • 2015
  • The GaN-powder scrap generated in the manufacturing process of LED contains significant amounts of gallium. This waste can be an important resource for gallium through recycling of scraps. In the present study, the influence of annealing temperatures on the structural properties of GaN powder was investigated when the waste was recycled through the mechanochemical oxidation process. The annealing temperature varied from $200^{\circ}C$ to $1100^{\circ}C$ and the changes in crystal structure and microstructure were studied. The annealed powder was characterized using various analytical tools such as TGA, XRD, SEM, and XRF. The results indicate that GaN structure was fully changed to $Ga_2O_3$ structure when annealed above $900^{\circ}C$ for 2 h. And, as the annealing temperature increased, crystallinity and particle size were enhanced. The increase in particle size of gallium oxide was possibly promoted by powder-sintering which merged particles to larger than 50 nm.

Research on Synthesis and Sintering Behavior of Nano-sized (Pb, La)TiO3 Powders Using Mechano Chemical Process (기계화학공정에 의한 (Pb, La)TiO3 나노 분말의 합성 및 소결 특성 연구)

  • Lee, Young-In;Goo, Yong-Sung;Lee, Jong-Sik;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below $1050^{\circ}C$ by using $Bi_2O_3$ powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and $1150^{\circ}C$, the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding $Bi_2O_3$ and the specimen with the relative densitiy over 96% were fabricated below $1050^{\circ}C$ when 2 wt% of $Bi_2O_3$ was added.