• 제목/요약/키워드: Mechanical sensitivity

검색결과 1,392건 처리시간 0.022초

강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구 (A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

특이값 분해와 고유치해석을 이용한 유한요소모델의 개선 (Updating Algorithms of Finite Element Model Using Singular Value Decomposition and Eigenanalysis)

  • 김홍준;박영필
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.163-173
    • /
    • 1999
  • Precise and reasonable modelling is necessary and indispensable to the analysis of dynamic characteristics of mechanical structures. Also. the effective prediction of the change of modal properties due to the variation of design parameters is required especially for the application of finite element method to the structural dynamics problems. To meet those necessity and requirement, three model updating algorithms are proposed for finite element methods. Those algorithms are based on sensitivity analysis of the modal data obtained from experimental modal analysis(EMA) and analytical modal analysis(AMA). The adapted sensitivity analysis methods of the algorithms are 1)eigensensitivity(EGNS) method. 2)frequency response function sensitivity(FRFS) method. 3)sensitivity based element-by-element method (SBEEM), Singular value decomposition(SVD) is used for performing eigenanalysis and parameter estimation in the updating process. Those algorithms are applied to finite element of a plate and the updating capability of each algorithm is compared in terms of accuracy. reliability and stability of the updating process. It is shown that the model updating method using frequency response function is superior to the other methods in view of various updating capabilities.

  • PDF

가진력과 단면형상 변화에 따른 외팔보 감쇠 진동의 민감도 해석 (Sensitivity Analysis of Dynamic Response by Change in Excitation Force and Cross-sectional Shape for Damped Vibration of Cantilever Beam)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.11-17
    • /
    • 2021
  • This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a damping element, such as bonding, which is excited under a general force at various locations. A sensitivity analysis was performed in a finite element model to show that two types of second-order algebraic governing equations were used to predict the rate of change of dynamic displacement: one is related to the modal coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of displacement. The sensitivity differential equation formulation includes more complicated terms compared with that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical results obtained by this suggested theory showed a relatively good agreement when compared with those obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of the response sensitivity for any finite element model of the dynamic system.

The Influence of Temperature and Strain Rate on the Mechanical Behavior in Uranium

  • Lee, Key-Soon;Park, Won-Koo
    • Nuclear Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.73-78
    • /
    • 1978
  • 온도 및 연신율변화 (strain-rate change)가 $\alpha$-uranium의 변형거동에 미치는 영향을 30$0^{\circ}C$에서 55$0^{\circ}C$까지 연구하였으며, strain rate sensitivity, activation volume, strain rate sensitivity exponent 및 dislocation velocity exponent을 조사하였다. 40$0^{\circ}C$이하에서 strain rate sensitivity exponent는 strain의 증가에 따라 증가하였으나 50$0^{\circ}C$이상에서는 strain의 증가에 따라 감소하는 경향을 나타냈다. 40$0^{\circ}C$이하에서는 strain에 의해 생기는 가공경화로 인한 내부 용력의 증가가 strain rate sensitivity exponent에 영향을 미치나 50$0^{\circ}C$이상에서는 많은 slip system이 변형에 기여하게 되므로 가공경화 보다는 thermal softening이 더 큰 영향을 미쳐서 strain rate sensitivity가 감소된다고 추측된다.

  • PDF

Parametric Analysis and Design Optimization of a Pyrotechnically Actuated Device

  • Han, Doo-Hee;Sung, Hong-Gye;Jang, Seung-Gyo;Ryu, Byung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.409-422
    • /
    • 2016
  • A parametric study based on an unsteady mathematical model of a pyrotechnically actuated device was performed for design optimization. The model simulates time histories for the chamber pressure, temperature, mass transfer and pin motion. It is validated through a comparison with experimentally measured pressure and pin displacement. Parametric analyses were conducted to observe the detailed effects of the design parameters using a validated performance analysis code. The detailed effects of the design variables on the performance were evaluated using the one-at-a-time (OAT) method, while the scatter plot method was used to evaluate relative sensitivity. Finally, the design optimization was conducted by employing a genetic algorithm (GA). Six major design parameters for the GA were chosen based on the results of the sensitivity analysis. A fitness function was suggested, which included the following targets: minimum explosive mass for the uniform ignition (small deviation), light casing weight, short operational time, allowable pyrotechnic shock force and finally the designated pin kinetic energy. The propellant mass and cross-sectional area were the first and the second most sensitive parameters, which significantly affected the pin's kinetic energy. Even though the peak chamber pressure decreased, the pin kinetic energy maintained its designated value because the widened pin cross-sectional area induced enough force at low pressure.

유압식 동력 조향기어 박스에서 설계변수의 특성검토 (Characteristic Investigation of Design Parameters on the Hydraulic Power Steering Gear Box)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.135-142
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The parameter sensitivity analysis such as valve opening area, torsional stiffness of torsion bar for system design are carried out by the analysis and experimental method. The predicted results by the development model were a good agreement with experimentally obtained results. The sensitivity investigation results rotary torque when changing an input shaft edge width, was most sensitive, to change in angle and slot width and supply flow of input shaft edge is not a lot sensitively.

초미세 틈새의 기체 베어링 해석용 유효 점도의 표현식과 관련 계수들의 민감도 해석 (Sensitivity Analysis of Effective Viscosity Coefficients for Computing Characteristics of Ultrathin Gas Film Bearings)

  • 김의한;임윤철
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.15-20
    • /
    • 2014
  • A more accurate expression for effective viscosity is obtained using a linear regression of the data from Fukui-Kaneko's model, which are obtained through numerical calculations based on the linearized Boltzmann equation. Veijola and Turowski's expression is adopted as a base function for effective viscosity. The four coefficients in that equation are optimized, and sensitivity analysis is conducted for these coefficients. The results show that the coefficient for the first-order Knudsen number is the most accurate, whereas the coefficient in the exponential of the Knudsen number is the least accurate compared with Fukui-Kaneko's results. The expression for effective viscosity is accurate within 0.02% rms of Fukui-Kaneko's results for the inverse Knudsen numbers from 0.01 to 100 and surface accommodation coefficients ranging from 0.7 to 1.

동하중을 받는 구조물의 최적화에 관한 연구동향 (An Overview of Optimization of Structures Subjected to Transient Loads)

  • 박경진;강병수
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.369-386
    • /
    • 2005
  • Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed - direct differentiation method and adjoint variable method. The approximation concept mainly focuses on re- sponse surface method in crashworthiness and local approximation with the intermediate variable Especially, as an approximated optimization technique, Equivalent Static Load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic systems is re- viewed in the viewpoint of the above three themes

DDM Rotordynamic Design Sensitivity Analysis of an APU Turbogenerator Having a Spline Shaft Connection

  • Lee, An-Sung;Ha, Jin-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.57-63
    • /
    • 2003
  • An eigenvalue design sensitivity formulation of a general nonsymmetric-matrix rotor-bearing system is devised. using the DDM (direct differential method). Then, investigations on the design sensitivities of critical speeds are carried out for an APU turbogenerator with a spline shaft connection. Results show that the dependence of the rate of change of the critical speed on the stiffness changes of bearing models of spline shaft connection points is negligible, and thereby their modeling uncertainty does not present any problem. And the passing critical speeds up to the 4th critical speed are not sensitive to the design stiffness coefficients of four main bearings. Further, the dependence of the rate of change of the critical speed on the shaft-element length changes shows quantitatively that the spline shaft has some limited influence on the 4th critical speed but no influence on the 1st to 3rd critical speeds. With no adverse effect from the spline shaft, the APU system achieves a critical speed separation margin of more than 40% at a rated speed of 60,000 rpm.

마이크로 무아레 간섭계를 이용한 초정밀 변형 측정 (Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry)

  • 주진원;김한준
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.