• Title/Summary/Keyword: Mechanical sensitivity

Search Result 1,390, Processing Time 0.058 seconds

An Efficient Algorithm for Design Sensitivity Analysis of railway Vehicle Systems (철도차량의 설계 민감도 해석을 위한 효율적인 알고리즘 개발)

  • 배대성;조희제;백성호;이관섭;조연옥
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.299-306
    • /
    • 1998
  • Design sensitivity analysis of a mechanical system is an essential tool for design optimization and trade-off studies. This paper presents an efficient algorithm for the design sensitivity analysis of railway vehicle systems, using the direct differentiation method. The cartesian coordinate is employed as the generalized coordinate. The governing equations of the design sensitivity analysis are formulated as the differential equations. Design sensitivity analysis of railway vehicle systems is performed to show the validity and efficiency of the proposed method.

  • PDF

Design and fabrication of a highly sensitive microcalorimetric biosensor by bulk micromachining (벌크 마이크로 머시닝을 이용한 고감도 미세 칼로리미터의 설계 및 제작)

  • Yoon, S.I.;Kim, J.H.;Kwak, B.S.;Kim, Y.J.;Jung, H.I.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.164-167
    • /
    • 2006
  • Calorimeter is one of widely used biosensors. Conventional or existing calorimeters are realized directly on a silicon wafer which has very high thermal conductivity. It results in decreasing temperature difference between junctions and it makes a sensitivity of calorimeter to be decreased. In this study, the microcalorimeter was made by using MEMS(Micro Electro Mechanical Systems)-technology and hot junctions of the microcalorimeter are released from a silicon substrate to reduce loss of generated heat by reactions between biomolecules. Sensitivity of the released microcalorimeter was 18 mV/M which is 1.5 times higher than another calorimeters on silicon substrate by reactions between biotin and streptavidin.

Robust Design and Tolerancing for the Performance Improvement of Stabilized Mirror System under Vehicle Vibration (차량진동에 대한 안정거울장치의 성능향상을 위한 강건설계 및 공차할당)

  • Lee, Chong-Won;Jeong, Ho-Seop;Sohn, Seok-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.859-869
    • /
    • 1997
  • In this paper, the robust design and tolerancing of the stabilized mirror is performed to increase its stabilization performance under vehicle vibration. Based on the sensitivity analysis, the seven important control factors are first identified, and then the optimal as well as robust values in the sense of Taguchi method are obtained. Finally, the tolerances associated with each design variables are determined based on a successive sensitivity analysis of the simulated system response so that the deviation in the response from the target value meets the specification requirements. The proposed tolerancing method features that it is a robust but conservative design method and that the computational effort is much less than the Monte Carlo simulation method.

Optimal Shape Design of Magnetic Actuators for Magnetic and Dynamic Characteristic Improvement

  • Yoo, Jeong-Hoon;Jung, Jae-Yeob;Hong, Hyeok-Soo
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.268-270
    • /
    • 2011
  • This study introduces a new topology optimization scheme combing the genetic algorithm (GA) with the on/off sensitivity method for the magnetic actuator core and the armature design. The design process intended to maximize the first eigen-frequency of the armature part and the magnetic actuating force acting on the armature simultaneously. GA based optimal design was carried out to obtain the initial structure and the modified on/off sensitivity method was succeeded to accelerate the design process. Final results show tens of percent improvement in actuating force as well as the first eigen-frequency of the armature.

Characterization of jute fibre reinforced pine rosin modified soy protein isolate green composites

  • Sakhare, Karishma M.;Borkar, Shashikant P.
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.191-209
    • /
    • 2022
  • Very slow degradation of synthetic based polymers has created a severe environmental issue that increased awareness towards research in polymers of biodegradable property. Soy protein isolate (SPI) is a natural biopolymer used as matrix in green composites but it has limitations of low mechanical properties and high water sensitivity. To enhance mechanical properties and reduce water sensitivity of Jute-SPI composites, SPI was modified with pine rosin which is also a natural cross-linking agent. 30% glycerol on the weight basis of a matrix was used as a plasticizer. The fibre volume fraction was kept constant at 0.2 whereas the pine rosin in SPI ranged from 5% to 30% of the matrix. The effects of pine rosin on mechanical, thermal, water sensitivity and surface morphology have been characterized using various techniques. The mechanical properties and water absorbency were found to be optimum for 15% pine rosin in Jute-SPI composite. Therefore, Jute-SPI composite without pine rosin and with 15% pine rosin were chosen for investigation through characterization by Fourier transforms infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), X-Ray diffraction (XRD) and Scanning electron microscope (SEM). The surface morphology of the composite was influenced by pine rosin which is shown in the SEM image. TGA measurement showed that the thermal properties improved due to the addition of pine rosin. Antimicrobial test showed antimicrobial property in the composite occurring 15% pine rosin. The research paper concludes that the modification of SPI resin with an optimum percentage of pine rosin enhanced mechanical, thermal as well as water-resistant properties of jute fibre reinforced composites.

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Optimization of the Path of Inner Reinforcement for an Automobile Hood Using Design Sensitivity Analysis (설계민감도해석을 이용한 자동차후드 보강경로 최적설계)

  • Lee, Tae-Hui;Lee, Dong-Gi;Gu, Ja-Gyeom;Han, Seok-Yeong;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.62-68
    • /
    • 2000
  • Optimization technique to find a path of an inner reinforcement of an automobile hood is proposed by using design sensitivity informations. The strength and modal characteristics of the automobile hood are analyzed and their design sensitivity analyses with respect to the thickness are carried out using MSC/NASTRAN. Based on the design sensitivity analysis, determination of design variables and response functions is discussed. Techniques improving design from design sensitivity informations are suggested and the double-layer method is newly proposed to optimize the path of stiffener for a shell structure, Using the suggested method, we redesign a new inner reinforcement of an automobile hood and compare the responses with the original design. It is confirmed that new design improved in the frequency responses without the weight increasement.

Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions (하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1852-1860
    • /
    • 1991
  • A shape design sensitivity of the elastic deformation due to a change of traction boundary condition is presented. The solution of governing equations for a linear elasticity problem is obtained by finite element method and the traction boundary is defined by design variables. The performance functional to be considered involves both the domain and boundary integral. Variations of geometry can be defined as design velocity. Using material derivative concept and adjoint equations, the design sensitivity is derived by Lagrange multiplier method. For a given geometry of a structure, the change of traction boundary is described by the tangential component of the design velocity only. The final result for the shape design sensitivity is formulated as the boundary integral form, the integrand is defined by tangential component of design velocity and first order derivatives of parameters. Numerical implementation of design sensitivity is discussed and is compared with the difference of the actual values.

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, Joo-Ho;Kwak, Hyun-Gu;Grandhi, R.V.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.

Performance improvement of a vehicle suspension by sensitivity analysis (민간도해석에 의한 자동차 현가장치의 성능개선에 관한 연구)

  • Song, Chuck-Gee;Park, Ho;Oh, Jae-Eung;Yum, Sung-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1464-1473
    • /
    • 1990
  • Optimal design parameters are estimated from the sensitivity function and performance index variation. Suspension design modification for performance improvement and basic materials for practical applications are presented. The linear quarter model of a vehicle suspension is analyzed in order to represent the utilities of sensitivity analysis, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. As an investigation results of sensitivity function for the vibrational amplitude of sprung mass to road profile input, it is shown that the most sensitive parameters are the suspension damping and the suspension stiffness. In order to identify the effects of these two parameters to the performance of suspension system, the performance index variation according to the changes of parameters is considered and then optimal design parameters are determined. It is verified that the system response is improved noticeably in the both of frequency and time domain after the design modification with the optimal parameters.