• Title/Summary/Keyword: Mechanical recovery performance

Search Result 255, Processing Time 0.025 seconds

A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System (폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계)

  • Bae, Sukjung;Heo, Hyungseok;Park, Jeongsang;Lee, Hongyeol;Kim, Charnjung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.

A Study on the Performance Characteristics of an Energy Saving Unit in a Hydraulic Elevator (유압식 엘리베이터 에너지 저감장치의 성능특성에 관한 연구)

  • Cho, Ihn-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2588-2595
    • /
    • 2013
  • In a traditional hydraulic elevator, elevator car is descended by down control valve, and the oil hydraulic energy must be lost during the descending stroke. In this paper, the performance characteristics of the hybrid type energy saving unit, is used to save the hydraulic energy which is lost during the descending stroke, for a hydraulic elevator are studied. The energy can be reused as the auxiliary power. The results show that the performance characteristics, such as the pressure, flow rate, output current and voltage, efficiency, and the energy recovery rate of the unit are stable and good as the energy recovery rate is 54%, and the energy saving unit is useful to reuse the saved energy during the descending stroke of elevator car. Also, it was confirmed that the energy saving unit can be deployed on a commercial scale.

Generating 3-D Models of Human Motions by Motion Capture

  • Yamaguchi, I.;Tou, K.;Tan, J.K.;Ishikawa, S.;Naito, T.;Yokota, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1629-1632
    • /
    • 2003
  • A technique is presented for generating a compound human motion from its primitive motions obtained by a motion capture system. Some human fundamental motions are modeled in a 3-D way and registered as primitive motions. Because the factorization method is used for the motion capture, calibration of video cameras and connection of the motion in the direction of time is both unnecessary. Employing these motions, various compound human motions are generated by connecting the motions after having applied rotation and parallel transformation to them. Linear interpolation is done at the discontinuous boundary between primitive motions and smooth connection is achieved. Experimental results show satisfactory performance of the proposed technique. The technique may contribute to producing various complicated human motions without much effort using a strict motion capture system.

  • PDF

A Study on Flow Analysis of Centrifugal Pump for Exhaust Heat Recovery in Residential Fuel Cell Using A Commercial CFD code (상용 CFD 코드를 이용한 가정용 연료전지의 배열회수용 원심펌프 유동해석에 관한 연구)

  • Hwang, Seung-Sik;Jo, Ji-Hoon;Jin, Kyoung-Min;Lee, Song-Kyu;Shin, Dong-Hoon;Chung, Tae-Yong;Park, Chang-Kwon
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.224-230
    • /
    • 2011
  • For developing high performance fuel cell, peripheral devices and key components have to be studied in priority. In this study, centrifugal pump was studied for heat recovery. For PEM fuel cell system, a four-impeller centrifugal pump was designed, tested and compared with result of commercial product (IWAKI). In addition, effects of number of impeller were analyzed by CFD. The experiment and analysis were progressed in the same conditions. The results showed the quantitative difference under 30% between the numerical and the experimental pressure difference and mass flow rate.

Performance Analysis of CHP Condersing Season heat load Conditions (계절별 부하 특성을 고려한 CHP 성능 해석)

  • Seo, Young-Ho;Lee, Joon-Hee;Kim, Nam-Jin;Kim, Jong-Yoon;Cho, Sung-Kap;Jeon, Yong-Han
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.454-459
    • /
    • 2010
  • This paper is a actual design case applied to make a bid for CHP plant construction in some country. The purpose of this study is to optimize the system performance for the requirement conditions written in ITB by the client. The system consists of gas turbine, steam turbine, heat recovery steam generator and heat exchangers for district heating. The performance analysis is conducted for various seasons conditions and heat load. As a result, air density and heat load is reduced in accordance with decreasing of the outdoor temperature, therefore the system power is reduced. Considering this, the design parameters to meet the requriement conditions are optimized.

Study on the Performance Verification Method and Failure Mechanism of Grading Capacitor of a Two-break Circuit-breaker (2점절 차단기 균압용 콘덴서 절연파괴 고장 메커니즘 및 성능검증 방법에 관한 연구)

  • Oh, SeungRyle;Han, Kisun;Kim, TaeKyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • Recently, the circuit-breaker rated voltage is getting higher as the transmission voltage increases. To increase the circuit-breaker rated voltage, a multi-break circuit-breaker which has two or more breakers in series is adopted. For multi-break circuit-breaker, a grading capacitor is used to mitigate the Transient Recovery Voltage(TRV) and control the voltage distribution across the individual interrupter units. However, all over the world, there are many failures such as mechanical damage, explosion due to insulation breakdown. Therefore, it is necessary to study the causes of failure and the new performance verification method. In this paper, we investigate the causes of dielectric breakdown of the grading capacitors in the KEPCO power system and propose the performance verification method.

Recent Trends of Light-enhanced Metal Oxide Gas Sensors: Review

  • Cho, Minkyu;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Recent light-enhanced metal oxide gas sensors are reviewed in this article. The basic mechanisms of a light-enhanced metal oxide gas sensor are discussed. Many literatures reveal that the standalone sensitivity and the response/recovery time enhancements enabled by the exposing light are not as high as the performance enhancement provided by external heating. Therefore, both optimal amount of external heating and exposed light intensity are necessary to increase the performance of these light-enhanced gas sensors. The development of highly light sensitive materials and structures is important to lower the overall power consumptions of the sensors.

Study on Thermal Performance Characteristics of CPC System Depending on Weather Conditions and Capacity of Heat Storage Tank (기상 조건과 축열조 용량에 따른 복합 포물형 집열기(CPC) 시스템의 열적 성능 특성에 관한 연구)

  • LIM, SOK-KYU;JUNG, YOUNG GUAN;KIM, KYOUNG HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.58-66
    • /
    • 2019
  • Static compound parabolic collectors (CPCs) have advantages such as ease for fabrication and lower cost compared with other concentrating collectors. In this study, thermal performance analysis of CPC employing heat storage tank was carried out. The clearness index and capacity of heat storage tank are taken as the main parameters for numerical simulation. The effects of the parameters on the hourly and daily system performances ncluding the useful energy, heat loss, and collector efficiency were numerically investigated. Results showed that the system has a potential for efficient recovery of solar thermal energy.

A study on the acoustic performance evaluation of heat recovery ventilator with a sound absorbing duct (흡음덕트 부착 열회수형 환기장치의 음향성능 평가에 관한 연구)

  • Bae, Myung-Whan;Song, Jun-Young;Park, Hui-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.468-475
    • /
    • 2016
  • The purpose of this study is to investigate the acoustic problems of the conventional heat recovery ventilator and to suggest the methods of noise reduction from a heat recovery ventilator according to the installed location. The noise level, in this study, was measured and discussed as the parameters of size, wind volume and sound absorbing duct length for a heat recovery ventilator based on domestic and international related standards. It is found, as a result, that almost all of noise levels from the small and medium heat recovery ventilators without the sound absorbing duct in the anechoic chamber were higher than the noise standard value of 50 dB(A) regardless of the wind volume, and the noise levels went down when a sound absorbing duct was installed. In addition, the sound pressure level relative to frequency bands according to the length of sound absorbing duct was generally decreased, as the length of sound absorbing duct in the small and medium heat recovery ventilators was big, and the sound pressure level was generally increased, as the wind volume was great.

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.