DOI QR코드

DOI QR Code

기상 조건과 축열조 용량에 따른 복합 포물형 집열기(CPC) 시스템의 열적 성능 특성에 관한 연구

Study on Thermal Performance Characteristics of CPC System Depending on Weather Conditions and Capacity of Heat Storage Tank

  • 임석규 (금오공과대학교 대학원) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 김경훈 (금오공과대학교 기계공학과)
  • LIM, SOK-KYU (Graduate School, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2018.11.23
  • 심사 : 2019.02.28
  • 발행 : 2019.02.28

초록

Static compound parabolic collectors (CPCs) have advantages such as ease for fabrication and lower cost compared with other concentrating collectors. In this study, thermal performance analysis of CPC employing heat storage tank was carried out. The clearness index and capacity of heat storage tank are taken as the main parameters for numerical simulation. The effects of the parameters on the hourly and daily system performances ncluding the useful energy, heat loss, and collector efficiency were numerically investigated. Results showed that the system has a potential for efficient recovery of solar thermal energy.

키워드

SSONB2_2019_v30n1_58_f0001.png 이미지

Fig. 1. Schematic of CPC

SSONB2_2019_v30n1_58_f0002.png 이미지

Fig. 2. Schematic of system

SSONB2_2019_v30n1_58_f0003.png 이미지

Fig. 3. Plot of ambient temperature

SSONB2_2019_v30n1_58_f0004.png 이미지

Fig. 4. Plot of total receiver insolation

SSONB2_2019_v30n1_58_f0005.png 이미지

Fig. 5. Plot of collector plate temperature

SSONB2_2019_v30n1_58_f0006.png 이미지

Fig. 6. Plot of heat loss at collector

SSONB2_2019_v30n1_58_f0007.png 이미지

Fig. 7. Plot of useful energy

SSONB2_2019_v30n1_58_f0008.png 이미지

Fig. 8. Plot of heat transfer at collector

SSONB2_2019_v30n1_58_f0009.png 이미지

Fig. 9. Plot of collector efficiency

SSONB2_2019_v30n1_58_f0010.png 이미지

Fig. 10. Plot of temperature in the storage tank

SSONB2_2019_v30n1_58_f0011.png 이미지

Fig. 11. Plot of daily collector loss in the storage tank

SSONB2_2019_v30n1_58_f0012.png 이미지

Fig. 12. Plot of daily useful energy in the storage tank

SSONB2_2019_v30n1_58_f0013.png 이미지

Fig. 13. Plot of daily collector efficiency

Table 1. Basic data for simulation

SSONB2_2019_v30n1_58_t0001.png 이미지

참고문헌

  1. A. Kalogirou, "Solar energy engineering", Academic Press, 2009, doi: https://doi.org/10.1016/C2011-0-07038-2.
  2. R. Winston, "Principles of Solar Concentrator of a Novel Design", Solar Energy, Vol. 16, 1974, pp. 89-95, doi: https://doi.org/10.1016/0038-092X(74)90004-8.
  3. A. Rabl, "Optical and Thermal properties of Compound Parabolic Concentrators", Solar Energy, Vol. 18, 1976, pp. 497-511, doi: https://doi.org/10.1016/0038-092X(76)90069-4.
  4. Y. Tripanagnostopolos and M. Souliotis, "ICS Solar Systems With Horizontal Cylindrical Storage Tank and Reflector of CPC or Involute Geometry", Renewable Energy, Vol. 29, No. 1, 2004, pp. 13-38, doi: https://doi.org/10.1016/S0960-1481(03)00139-3.
  5. N. Fraidenraich, C. Tiba, B. B. Brandao, and O. C. Vilela, "Analytic solutions for the geometric and optical properties of stationary compound parabolic concentrators with fully illuminated inverted V receiver", Solar Energy, Vol. 82, No. 2, 2008, pp. 132-143, doi: https://doi.org/10.1016/j.solener.2007.06.012.
  6. Y. Tripanagnostopoulos and P. Yianoulis, "CPC Solar Collectors With Multichannel Absorber", Solar Energy, Vol. 58, No. 1-3. 1996, pp. 49-61, doi: https://doi.org/10.1016/0038-092X(96)00055-2.
  7. Y. Tripanagnostopoulos Y., P. Yianoulis, S. Papaefthimiou, and S. Zafeiratos, "CPC Collectors With Flat Bifacial Absorbers", Solar Energy, Vol. 69, No. 3, 2000, pp. 191-203, doi: https://doi.org/10.1016/S0038-092X(00)00061-X.
  8. C. Y. Huang, H. C. Sung, and K. L. Yen, "Experimental study of photovoltaic/thermal (PV/T) hybrid system", Int. J. Smart Grid Clean Energy, Vol. 2, No. 2, 2013, pp. 148-151, doi: http://dx.doi.org/10.12720/sgce.2.2.148-151.
  9. D. Atheaya, A. Tiwari, and G. N. Tiwari, "Exergy analysis of photovoltaic thermal (PVT) compound parabolic concentrator (CPC) for constant collection temperature mode", Solar Energy, Vol. 135, 2016, pp. 222-231, doi: https://doi.org/10.1016/j.solener.2016.05.055.
  10. D. Su, Y. Jia, X. Huang, G. Alva, Y. Tang, and G. Fang, "Dynamic performance analysis of photovoltaic-thermal solar collector with dual channels for different fluids", Energy Conversion and Management, Vol. 120, 2016, pp. 13-24, doi: https://doi.org/10.1016/j.enconman.2016.04.095.
  11. W. Zheng, L. Yang, H. Zhang, S. You, and C. Zhu, "Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector", Energy Conversion and Management, Vol. 129, 2016, pp. 11-22, doi: https://doi.org/10.1016/j.enconman.2016.10.013.
  12. Y. Kim, G. Han, and T. Seo, "An evaluation on thermal performance of CPC solar colletor", International Communications in Heat and Mass transfer, Vol. 35, No. 4, 2008, pp. 446-457, doi: https://doi.org/10.1016/j.icheatmasstransfer.2007.09.007.
  13. N. Ortega, O. Garcia-Valladares, R. Best, and V.H. Gomez, "Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator", Renewable Energy, Vol. 33, No. 9, 2008, pp. 2064-2076, doi: https://doi.org/10.1016/j.renene.2007.11.016.
  14. B. D. Park, G. D. Kim, and K. H. Kim, "Dynamic performance analysis of flat plate solar collector system according to weather conditions and capacity of heat storage tank", J. Korea Solar Eng., Vol. 34, No. 6, 2014, pp. 57-65, doi: https://doi.org/10.7836/kses.2014.34.6.057.
  15. H. Kessentini and C. Bouden,"Numerical and experimental study of an integrated solar collector with CPC reflectors", Renewable Energy, Vol. 57, 2013, pp. 577-586, doi: https://doi.org/10.1016/j.renene.2013.02.015.
  16. Y. Tripanagnostopoulos and M. Souliotis, "ICS solar systems with two water tanks", Renewable Energy, Vol. 31, No. 11, 2006, pp. 1698-1717, doi: https://doi.org/10.1016/j.renene.2005.08.028.
  17. C. K. Hsieh and F. M. Mei, "Empirical equations for calculation of CPC collector loss coefficients", Solar Energy, Vol. 30, No. 5, 1983, pp. 487-489, doi: https://doi.org/10.1016/0038-092X(83)90121-4.
  18. M. Wang, J. Wang, Y. Zhao, P. Zhao, and Y. Dai, "Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors", App. Therm. Eng., Vol. 50, No. 1, 2013, pp. 816-825, doi: https://doi.org/10.1016/j.applthermaleng.2012.08.013.
  19. L. O. Degelman, "Monte Corlo Simulation of Solar Radiation and Dry Bulb Temperatures for Air Conditioning Purpose", Dept. of Arch. Eng., Pennsylvania State Univ., Report No. 70-9, 1970.