• 제목/요약/키워드: Mechanical properties at high temperatures

검색결과 378건 처리시간 0.036초

고강도 구조용 강재의 고온물성 평가연구 (Evaluation Study on the Mechanical and Thermal Properties of High Strength Structural Steel at High Temperature)

  • 권인규
    • 한국화재소방학회논문지
    • /
    • 제27권3호
    • /
    • pp.72-79
    • /
    • 2013
  • 최근 건축물은 재료의 고강도화 및 단면형상 최적화를 바탕으로 초고층화, 장대화 및 복합화 추세로 발달하고 있으나, 화재 위험성에 의한 구조적 거동에 관한 연구는 매우 미진한 실정이다. 특히 고강도 구조용 강재로 구성된 강구조 건축물의 구조부재에 대한 화재 노출 시 거동평가를 위한 기초적인 자료조차 거의 없는 실정이다. 따라서 본 연구에서는 고층 강구조 건축물에 활용되고 있는 고강도 구조용 강재의 고온 시 구조적 내력 평가를 위한 기계적 특성과 열적 특성 자료 도출을 목적으로 항복강도, 탄성계수 그리고 열전도율 등을 측정하고, 이를 일반 구조용 강재의 특성과 비교분석을 통하여 상대적 안전성을 평가한다.

냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy)

  • 조상현;이성희
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.246-251
    • /
    • 2020
  • The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

핵융합로용 저방사화 철강재료(RAFs)의 크리프 특성평가 (Evaluation on Creep Properties of Reduced Activation Ferritic Steel(RAFs) for Nuclear Fusion Reactor)

  • 공유식;윤한기;남승훈
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.58-63
    • /
    • 2004
  • Reduced Activation Ferritic/Martensitic Steels (RAFs) are leading candidntes for structural materials of a D-T fusion reactor. One of the RAFs, JLF-l (9Cr-2W-V, Ta) has been developed and has shown to have good resistance against high-fluency neutrino irradiation and good phase stability. Recently, in order to clarify the strengthening mechanisms at high temperatures, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test technique development of high temperature creep behaviors for this material is very important. In this paper, the creep properties and creep life prediction, using the Larson-Miler parameter method for JLF-l to be used for fusion reactor materials or other high temperature components, are presented at the elevated temperatures of 50$0^{\circ}C$, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and 704$^{\circ}C$. It was confirmed, experimentally and quantitatively, that a creep life predictive equation, at such various high temperatures, is well derived mr the LMP method.

Dielectric and Transport Properties of Acetonitrile at Varying Temperatures: a Molecular Dynamics Study

  • Orhan, Mehmet
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1469-1478
    • /
    • 2014
  • Use of acetonitrile in electrolytes promotes better operation of supercapacitors. Recent efforts show that electrolytes containing acetonitrile can also function in a wide range of operating temperatures. Therefore, this paper addresses the dielectric relaxation processes, structure and dynamic properties of the bulk acetonitrile at various temperatures. Systems of acetonitrile were modeled using canonical ensemble and simulated by employing Molecular Dynamics method. Results show that interactions among the molecules were correlated within a cut-off radius while parallel and anti-parallel arrangements are observed beyond this radius at relatively high and low temperatures respectively. Furthermore, effects of C-C-N and C-H bending modes were greatly appreciated on the power spectral density of time rate change of dipole-dipole correlations whereas frequency shifts were observed on all modes at the lowest temperature under consideration. Linear variations with temperature were depicted for reorientation times and self-diffusion coefficients. Shear viscosity was also computed with a good accuracy within a certain range of the temperature as well.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

석회석 미분말 혼입량과 분말도가 콘크리트의 고온 역학적 특성에 미치는 영향 (Effect of limestone powder replacement ratio and fineness on high temperature mechanical properties of concrete )

  • 최윤성;김규용;유하민;이예찬;서동균;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.271-272
    • /
    • 2023
  • In this study, limestone powder used to replace cement at a weight ratio of 10%, 15%, and 20% was tested at 3000, 4000, and 5000 levels of fineness. The mechanical properties of the concrete were investigated before and after exposure to high temperatures (100, 300, and 500℃), and the effects of limestone powder fineness and replacement ratio on the mechanical properties of the concrete were analyzed.

  • PDF

갈바어닐링온도변화가 합금화용융아연코팅의 합금상과 마찰특성에 미치는 영향 (Effects of Galvannealing Temperatures on Iron-Zn Intermetallic Compounds and Friction Characteristic of Galvannealed Coatings)

  • 이정민;김동환;이선봉;김동진;김병민
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1107-1114
    • /
    • 2008
  • This paper is aimed to understand the effect of different galvannealing temperatures on the frictional properties and Fe-Zn intermetallic phases of the galvannealed (GA) coatings on steel sheets. Their galvannealing treatments were conducted at 465, 505, 515 and $540^{\circ}C$ for about 10s in the additional heating furnace of an industrial continuous hot-dip galvanizing line. The mechanical and the frictional properties of the coatings were estimated using nanoindentation, nanoscratch, micro vickers hardness tests and flat friction tests, which were performed at contact pressures of 4, 20 and 80MPa. Also, the correlation between the microstructure and the frictional properties of the GA coatings were investigated by SEM observation for the cross-section of the GA coating after and before flat friction tests. The results showed that the mechanical and the frictional properties of the coatings are strongly dependent on their phase distributions and microstructure. Especially, in low contact pressure of 4MPa the frictional properties of the coatings were dependent on the surface phases and morphology, while in high contact pressure of 80MPa it was influenced by their mechanical properties based on the dominant phase distributions.

스테인리스강의 크리프 특성치와 파단시간과의 관계 (Relationship between Creep Characteristic Values and Rupture time in STS304 Stainless Steels)

  • 공유식;김선진;이배섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.228-233
    • /
    • 2004
  • The characteristics of the probability distribution for mechanical properties, e.g. tensile strength, reduction of area ana elongation, for STS304 stainless steel in elevated temperature were investigated from tensile test performed by constant cross head speea controls with 1mm/min, Recently, in order to clarify the strengthening mechanisms at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test ,technique development of high temperature creep behaviors for this material is very important. In this paper, the creep praperties and creep life prediction by Larson-Miller parameter method for STS304 stainless steel to be used for other high temperature components were presented at the elevated temperatures of 600, 650 and $700^{\circ}C$.

  • PDF

Ni-Cr계 고용강화형 합금에서 조성에 따른 기계적 및 고온부식 특성 평가 (Effects of alloying elements on the mechanical and high temperature corrosion properties of solid-solution hardening nickel-base alloy)

  • 정수진;김동진
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.178-185
    • /
    • 2014
  • Alloy 617 is considered as a candidate Ni-based superalloy for the intermediate heat exchanger (IHX) of a very high-temperature gas reactor (VHTR) because of its good creep strength and corrosion resistance at high temperatures. Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. As the Alloy 617 has been exposed to high temperatures at $950^{\circ}C$ in the impure helium environment of a VHTR, the degradation of material is accelerated and mechanical properties decreased. The high-temperature strength, creep, and corrosion properties of the structural material for an IHX are highly important to maintain the integrity in a harsh environment for a 60 year period. Therefore, an alloy superior to alloy 617 should be developed. In this study, the mechanical and high-temperature corrosion properties for Ni-Cr alloys fabricated in the laboratory were evaluated as a function of the grain boundary strengthening and alloying elements. The ductility increased and decreased by increasing the amount of Mo and Cr, respectively. Surface oxide was detached during the corrosion test, when Al was not added to alloy. However the alloy with Al showed improved oxide adhesive property without significant degradation and mechanical property. Aluminum seems to act as an anti-corrosive role in the Ni-based alloy.