Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1469

Dielectric and Transport Properties of Acetonitrile at Varying Temperatures: a Molecular Dynamics Study  

Orhan, Mehmet (Department of Mechanical Engineering, Pamukkale University)
Publication Information
Abstract
Use of acetonitrile in electrolytes promotes better operation of supercapacitors. Recent efforts show that electrolytes containing acetonitrile can also function in a wide range of operating temperatures. Therefore, this paper addresses the dielectric relaxation processes, structure and dynamic properties of the bulk acetonitrile at various temperatures. Systems of acetonitrile were modeled using canonical ensemble and simulated by employing Molecular Dynamics method. Results show that interactions among the molecules were correlated within a cut-off radius while parallel and anti-parallel arrangements are observed beyond this radius at relatively high and low temperatures respectively. Furthermore, effects of C-C-N and C-H bending modes were greatly appreciated on the power spectral density of time rate change of dipole-dipole correlations whereas frequency shifts were observed on all modes at the lowest temperature under consideration. Linear variations with temperature were depicted for reorientation times and self-diffusion coefficients. Shear viscosity was also computed with a good accuracy within a certain range of the temperature as well.
Keywords
Acetonitrile; Molecular dynamics; Dielectric relaxation; Transport properties; Energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.; Janes, A.; Lust, E. J. Power Sources 2004, 133, 320-328.   DOI   ScienceOn
2 Liu, W.; Yan, X.; Lang, J.; Xue, Q. J. Mater. Chem. 2012, 22, 8853.   DOI
3 Lin, R.; et al. J. Phys. Chem. Lett. 2011, 2, 2396-2401.   DOI
4 Abdallah, T.; Lemordant, D.; Claude-Montigny, B. Journal of Power Sources 2012, 201, 353-359.   DOI
5 Simon, P.; Gogotsi, Y. Accounts of Chemical Research 2013, 46, 1094-1103.   DOI
6 Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. Journal of Power Sources 2010, 195, 5814-5819.   DOI   ScienceOn
7 Fu, C.; et al. J. Solid State Electrochem 2011, 15, 2581-2585.   DOI
8 Hung, K.; Masarapu, C.; Ko, T.; Wei, B. Journal of Power Sources 2004, 138, 944-949.
9 Brandon, E. J.; West, W. C.; Smart, M. C.; Whitcanack, L. D.; Plett, G. A. Journal of Power Sources 2007, 170, 225-232.   DOI
10 Coadou, E.; et al. J. Phys. Chem. C 2013, 117, 10315-10325.   DOI
11 Bohm, H. J.; McDonald, I. R.; Madden, P. A. Molecular Physics 1983, 49, 347-360.   DOI
12 Hsu, C. S.; Chandler, D. Molecular Physics 1978, 36, 215-224.   DOI
13 Jorgensen, W. L.; Briggs, J. M. Molecular Physics 1988, 63, 547-558.   DOI   ScienceOn
14 Gee, P. J.; Van Gunsteren, W. F. Molecular Physics 2006, 104, 477-483.   DOI
15 Grabuleda, X.; Jaime, C.; Kollamnn, P. A. Journal of Computational Chemistry 2000, 21, 901-908.   DOI
16 Nikitin, A. M.; Lyubartsev, A. P. Journal of Computational Chemistry 2007, 28, 2020-2026.   DOI
17 Alberti, M.; Amat, A.; De Angelis, F.; Pirani, F. The Journal of Physical Chemistry B 2013, 117, 7065-7076.   DOI
18 Edwards, D. M. F.; Madden, P. A.; McDonald, I. R. Molecular Physics 1984, 51, 1141-1161.   DOI
19 Mountain R. D. The Journal of Chemical Physics 1997, 107, 3921-3923.   DOI   ScienceOn
20 Plimpton, S. Journal of Computational Physics 1995, 117, 1-19.   DOI   ScienceOn
21 Guardia, E. et al. Molecular Simulation 2001, 26, 287-306.   DOI
22 Mayo, S. L.; Olafson, B. D.; Goddard III, A. Journal of Physical Chemistry 1990, 94, 8897-8909.   DOI
23 Cabaleiro-Lago, E. M.; Rios, M. A. J. Phys. Chem. A 1997, 101, 8327-8334.   DOI
24 Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles; 1988; p xxi+540.
25 Deak, J. C.; Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 1998, 102, 8193-8201.   DOI
26 Nevins, D.; Spera, F. J. Molecular Simulation 2007, 33, 1261-1266.   DOI
27 Pugachev, Y.. F. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 1991, 34, 111-113.
28 Kovacs, H.; Kowalewski, J.; Maliniak, A.; Stilbs, P. The Journal of Physical Chemistry 1989, 93, 962-969.   DOI
29 Rudenko, A. P. Oniitekhim 1983, 1-12.
30 Krestov, G. A. Zh. Fiz. Khim. 1986, 60, 982-984.
31 McQuarrie, D. Statistical Mechanics; University Science Books: 2000; p 495-497.
32 Shere, I. G.; Pawar, V. P.; Mehrotra, S. C. Journal of Molecular Liquids 2007, 133, 116-119.   DOI
33 Barthel, J.; Kleebauer, M.; Buchner, R. Journal of Solution Chemistry 1995, 24, 1-17.   DOI
34 Shkodin, A. M. Zh. Obshch. Khim. 1977, 47, 1681-1686.
35 Yuan, P.; Schwartz, M. Journal of the Chemical Society; Faraday Transactions 1990, 86, 593.   DOI
36 Sugitani, A.; Ikawa, S.; Konaka, S. Chemical Physics 1990, 142,423.   DOI
37 Alexiadis, O.; Mavrantzas, V. G. Macromolecules 2013, 46, 2450-2467.   DOI
38 Abramczyk, H.; Paradowska-Moszkowska, K. Chemical Physics 2001, 65, 177-191.
39 Gray, C. G.; Gubbins, K. E. Theory of Molecular Liquids; Clarendon Press: 1984.
40 Yoon, I.; et al. Chemistry-A A European Journal 2009, 15, 1115-1122.   DOI
41 Pavel, D.; Shanks, R. Polymer 2003, 44, 6713-6724.   DOI
42 Li, C.; Strachan, A. Polymer 2010, 51, 6058-6070.   DOI