DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy

냉간압연된 Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn계 합금의 미세조직 및 기계적 특성

  • Jo, Sang-Hyeon (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 조상현 (국립목포대학교 신소재공학과) ;
  • 이성희 (국립목포대학교 신소재공학과)
  • Received : 2020.04.07
  • Accepted : 2020.04.17
  • Published : 2020.05.27

Abstract

The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.

Keywords

References

  1. S. Guo, Y. Xu, Y. Han, J. Liu, G. Xue and H. Nagaumi, Trans. Nonferrous Met. Soc. China, 24, 2393 (2014). https://doi.org/10.1016/S1003-6326(14)63362-8
  2. X. Fan, Z. He, W. Zhou and S. Yuan, J. Mater. Process. Technol., 228, 179 (2016). https://doi.org/10.1016/j.jmatprotec.2015.10.016
  3. L. Ding, Y. Weng, S. Wu, R. E. Sansers, Z. Jia and Q. Liu, Mater. Sci. Eng., A 651, 991 (2016). https://doi.org/10.1016/j.msea.2015.11.050
  4. M. J. Ahn, H. S. You and S. H. Lee, Korean J. Mater. Res., 26, 388 (2016). https://doi.org/10.3740/MRSK.2016.26.7.388
  5. J. H. Yang and S. H. Lee, Korean J. Mater. Res., 26, 628 (2016). https://doi.org/10.3740/MRSK.2016.26.11.628
  6. H. W. Kim, S. B. Kang, H. Kang and K. W. Nam, Korean J. Met. Mater., 37, 1041 (1999).
  7. H. S. Ko, S. B. Kang, H. W. Kim and S. H. Hong, Korean J. Met. Mater., 37, 650 (1999).
  8. H. S. Ko, S. B. Kang and H. W. Kim, Korean J. Met. Mater., 37, 891 (1999).
  9. K. D. Woo, H. S. Na, H. J. Mun and I. O. Hwang, Korean J. Met. Mater., 38, 766 (2000).
  10. K. D. Woo, I. O. Hwang, J. S. Lee, Korean J. Met. Mater., 37, 1468 (1999).
  11. C. W. Park and H. Y. Kim, Trans. Korean Soc. Mech. Eng. A, 36, 1675 (2012). https://doi.org/10.3795/KSME-A.2012.36.12.1675
  12. N. J. Park, J. H. Hwang and J. S. Roh, Korean J. Met. Mater., 47 1 (2009).
  13. C. D. Yim, Y. M. Kim, S. H. Park and B. S. You, Korean J. Met. Mater., 50, 619 (2012). https://doi.org/10.3365/kjmm.2012.50.9.619
  14. D. H. Kim, J. M. Choi, D. H. Jo and I. M. Park, Korean J. Met. Mater., 52, 195 (2014). https://doi.org/10.3365/KJMM.2014.52.3.195
  15. E. Y. Kim, J. H. Cho, H. W. Kim and S. H. Choi, Korean J. Met. Mater., 51, 41 (2012). https://doi.org/10.3365/KJMM.2013.51.1.041
  16. S. J. Oh and S. H. Lee, Korean J. Mater. Res., 28, 534 (2018). https://doi.org/10.3740/MRSK.2018.28.9.534
  17. J. Y. Hwang and S. H. Lee, Korean J. Mater. Res., 29, 392 (2019). https://doi.org/10.3740/MRSK.2019.29.6.392
  18. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., p.169, Elsevier Ltd, UK (2004).
  19. Japan Inst. of Light Metals, Microstructure and Properties of Aluminum Alloys, p.451, Japan (1991).
  20. G. E. Dieter, Mechanical Metallurgy, SI Metric Ed., p.71, McGraw-Hill Book Company, London (2001).