Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.5.246

Microstructure and Mechanical Properties of a Cold-Rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn System Alloy  

Jo, Sang-Hyeon (Department of Advanced Materials Science and Engineering, Mokpo National University)
Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.30, no.5, 2020 , pp. 246-251 More about this Journal
Abstract
The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 ℃ for 1 hour. The specimens annealed at temperatures up to 300 ℃ show a deformation structure; however, from 350 ℃ they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338 MPa after annealing at 400 ℃. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.
Keywords
cold rolling; aluminum alloys; mechanical properties; microstructure; annealing;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 S. Guo, Y. Xu, Y. Han, J. Liu, G. Xue and H. Nagaumi, Trans. Nonferrous Met. Soc. China, 24, 2393 (2014).   DOI
2 X. Fan, Z. He, W. Zhou and S. Yuan, J. Mater. Process. Technol., 228, 179 (2016).   DOI
3 L. Ding, Y. Weng, S. Wu, R. E. Sansers, Z. Jia and Q. Liu, Mater. Sci. Eng., A 651, 991 (2016).   DOI
4 M. J. Ahn, H. S. You and S. H. Lee, Korean J. Mater. Res., 26, 388 (2016).   DOI
5 H. W. Kim, S. B. Kang, H. Kang and K. W. Nam, Korean J. Met. Mater., 37, 1041 (1999).
6 H. S. Ko, S. B. Kang, H. W. Kim and S. H. Hong, Korean J. Met. Mater., 37, 650 (1999).
7 H. S. Ko, S. B. Kang and H. W. Kim, Korean J. Met. Mater., 37, 891 (1999).
8 K. D. Woo, H. S. Na, H. J. Mun and I. O. Hwang, Korean J. Met. Mater., 38, 766 (2000).
9 K. D. Woo, I. O. Hwang, J. S. Lee, Korean J. Met. Mater., 37, 1468 (1999).
10 C. W. Park and H. Y. Kim, Trans. Korean Soc. Mech. Eng. A, 36, 1675 (2012).   DOI
11 N. J. Park, J. H. Hwang and J. S. Roh, Korean J. Met. Mater., 47 1 (2009).
12 C. D. Yim, Y. M. Kim, S. H. Park and B. S. You, Korean J. Met. Mater., 50, 619 (2012).   DOI
13 D. H. Kim, J. M. Choi, D. H. Jo and I. M. Park, Korean J. Met. Mater., 52, 195 (2014).   DOI
14 J. H. Yang and S. H. Lee, Korean J. Mater. Res., 26, 628 (2016).   DOI
15 E. Y. Kim, J. H. Cho, H. W. Kim and S. H. Choi, Korean J. Met. Mater., 51, 41 (2012).   DOI
16 S. J. Oh and S. H. Lee, Korean J. Mater. Res., 28, 534 (2018).   DOI
17 J. Y. Hwang and S. H. Lee, Korean J. Mater. Res., 29, 392 (2019).   DOI
18 F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., p.169, Elsevier Ltd, UK (2004).
19 Japan Inst. of Light Metals, Microstructure and Properties of Aluminum Alloys, p.451, Japan (1991).
20 G. E. Dieter, Mechanical Metallurgy, SI Metric Ed., p.71, McGraw-Hill Book Company, London (2001).