• Title/Summary/Keyword: Mechanical Stress Bone Cell

Search Result 19, Processing Time 0.027 seconds

THE EFFECTS OF MECHANICAL STRESS ON CULTURED BONE CELL POPULATIONS (Mechanical stress가 골조직세포군에 미치는 영향)

  • Kim, Sang-Tae;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.105-114
    • /
    • 1994
  • The movement of teeth during orthodontic treatment requires bone remodeling process of bone formation and bone resolution. To find out the changes occuring in the cell itself, mechanical stress was applied to the cell populations involved in the bone metabolism. Bone tissue cell populations were isolated from fetal rat calvaria and divided into OC and OB groups. Following results were obtained from measuring the changes in acid & alkaline phosphatease activity, cyclic AMP and $PGE_2$ production in time lapse after the application of mechanical stress. 1. In case of the marker enzyme of specific bone tissue cell, acid phosphatase activity was high in OC group and alkaline phosphatase activity was high in OB group. 2. After the mechanical stress was applied, acid phosphatase activity was decreased in both OC and OB groups and alkaline phosphatase activity was increase in OB group. 3. When the mechanical stress was applied for 15, 30 and 60 minutes, the production of $PGE_2$ increased in both OC and OB groups, as the time span increased. 4. When the mechanical stress was applied for 20 and 40 minutes, the production of $PGE_2$ increased in both OC and OB groups, as the time span increased.

  • PDF

Bone Cell Response to Neurotransmitters and Mechanical Loading (신경전달물질 및 물리적 자극에 대한 뼈 세포의 반응)

  • Kwag, J.H.;Kim, B.G.;Kim, K.H.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.89-93
    • /
    • 2009
  • Bone remodeling is a continuous process of skeletal renewal during which bone formation is tightly coupled to bone resorption. Mechanical loading is an important regulator of bone formation and resorption. In recent studies, neurotransmitters such as vasoactive intestinal peptide (VIP) were found to be present inside bone tissue and have been suggested to potentially regulate bone remodeling. In this study, our objective was to use a pre-established in vitro oscillatory fluid flow-induced shear stress mechanical loading system to quantify the effect of VIP on bone resorptive activity and investigate its combined effect with mechanical loading. VIP decreased osteoclastogenesis significantly decreased RANKL/OPG mRNA ration by approximately 90%. Combined VIP and mechanical loading further decreased RANKL/OPG ratio to approximately 95%. These results suggest that VIP present in bone tissue may synergistically act with mechanical loading to regulate bone remodeling via suppression of bone resorptive activities.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.

mTOR Signal Transduction Pathways Contribute to TN-C FNIII A1 Overexpression by Mechanical Stress in Osteosarcoma Cells

  • Zheng, Lianhe;Zhang, Dianzhong;Zhang, Yunfei;Wen, Yanhua;Wang, Yucai
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migration. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.

The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells (기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향)

  • BAE, Sung-Min;KYUNG, Hee-Moon;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.291-299
    • /
    • 1996
  • Orthodontic force is a mechanical stress controlling both of tooth movement and skeletal growth. The mechanical stress stimulate bone cells that may exert some influence on bone remodeling. The purpose of this study was to evaluate the difference in cellular activity depending on mechanical stresses such as compressive and tensile force by determining the alkaline phosphatase(ALP) activity. A clonal osteogenic cell line MC3T3-E1 was seeded into a 24-well plate($2{\times}10^4/well$). At the confluent phase, a continuous compressive hydrostatic pressure($25g/cm^2$, $300g/cm^2$) and continuous tensile hydrostatic pressure($-25g/cm^2$, $-300g/cm^2$) were applied for 4, 6, 10, 14, 18, 20 days respectively by a diaphgragm pump. At the end of the stimulation period, cell layers were prepared for ALP activity assay. The ALP activity of the compressive group increased more than that of the tensile group at same force magnitude, whereas the cells responded to a similar pattern regardless of the type of mechanical stress The ALP activity of the compressive and tensile group turned into the level of the control group as the length of time increased. These results indicated that a mechanical stress may be more effective on cellular activity during active cellular proliferation and differentiation periods. The time to achieve maximum ALP activity was delayed as the mechanical stress increased in both the compressive and the tensile group. Accordingly, the magnitude of the stress rather than the type of mechanical stress may have more influence on cellular activity.

  • PDF

Development of a Tensile Cell Stimulator to Study the Effects of Uniaxial Tensile Stress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (세포 인장 자극기의 개발과 세포 인장 자극을 통한 성체 줄기세포의 골분화 유도)

  • Shin, Hyun-Jun;Lee, Woo-Teak;Park, Suk-Hoon;Lee, Sun-Hwa;Park, Jung-Ho;Yoon, Yong-San;Shin, Jennifer H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.629-636
    • /
    • 2009
  • Mechanical stimulation is known to play a vital role on the differentiation of mesenchymal stem cells (MSCs) to pre-osteoblasts. In this research, we developed a tensile cell stimulator, composed of a DC motor-driven actuator and LVDT sensor for measuring linear displacement, to study the effects of tensile stress on osteogenic differentiation of MSCs. First, we demonstrated the reliability of this device by showing the uniform strain field in the silicon substrate. Secondly, we investigated the effects of tensile stretching on osteogenic differentiation. We imposed a pre-set cyclic strain at a fixed frequency on cell monolayer cultured on a flexible silicon substrate while varying its amplitude and duration. 60 min of resting period was allowed between 30 min of cyclic stretching and this cycle is repeated up to 7 days. Under the combined stimulation with osteogenic media and mechanical stretching, the osteogenic markers such as alkaline phosphatase (ALP), osterix, and osteopontin began to get expressed as early as 4 days of stimulation, which is much shorter than what is typically required for osteogenic media induced differentiation. Moreover, different markers were induced at different magnitudes of the applied strains. Lastly, for the case of ALP, we observed the antagonistic effects of osteogenic media when combined with mechanical stretching.

Fabrication and Characterization of the Ti-TCP Composite Biomaterials by Spark Plasma Sintering

  • Mondal, Dibakar;Park, Hyun-Kuk;Oh, Ik-Hyun;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Ti metal has superior mechanical properties along with biocompatibility, but it still has the problem of bio-inertness thus forming weaker bond in bone/implant interface and long term clinical performance as orthopaedic and dental devices are restricted for stress shielding effect. On the other hand, despite the excellent biodegradable behavior as being an integral constituent of the natural bone, the mechanical properties of ${\beta}$-tricalcium phosphate $(Ca_3(PO_4)_2;\;{\beta}-TCP)$ ceramics are not reliable enough for post operative load bearing application in human hard tissue defect site. One reasonable approach would be to mediate the features of the two by making a composite. In this study, ${\beta}$-TCP/Ti ceramic-metal composites were fabricated by spark plasma sintering in inert atmosphere to inhibit the formation of $TiO_2$. Composites of 30 vol%, 50 vol% and 70 vol% ${\beta}$-TCP with Ti were fabricated. Detailed microstructural and phase characteristics were investigated by FE-SEM, EDS and XRD. Material properties like relative density, hardness, compressive strength, elastic modulus etc. were characterized. Cell viability and biocompatibility were investigated using the MTT assay and by examining cell proliferation behavior.

  • PDF

EXPRESSION OF OSTEOGENESIS RELATED FACTORS ACCORDING TO DISTRACTION RATE IN THE DISTRACTION OSTEOGENESIS (신연 골형성술시 신연속도에 따른 골형성 관여 인자의 발현)

  • Jee, Yu-Jin;Kim, Yeo-Gab
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.250-265
    • /
    • 2008
  • Distraction osteogenesis is a well-established clinical treatment for limb length discrepancy and skeletal deformities. Appropriate mechanical tension-stress is believed not to break the callus but rather to stimulate osteogenesis. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. Although the biomechanical, histological, and ultrastructural changes associated with distraction osteogenesis have been widely described, the basic biology of the process is still not well known. Moreover, the molecular mechanisms in distraction osteogenesis remain largely unclear. Recent studies have implicated the growth factor cascade is likely to play an important role in distraction. And current reserch suggested that mechanical tension-stress modulates cell shape and phenotype, and stimulates the expression of the mRNA for bone matrix proteins. The purpose of this study is to examine the pattern of expression of growth factors($TGF-{\beta}1$, IGF-I, bFGF) and extracellular matrix proteins(osteoclacin, osteonectin) related to osteogenesis by osteodistraction of the mandible in rabbits. 24 rabbits is used for this experiment. Experimental group are gradual distraction(0.7mm, twice/day), acute distraction(1.4mm, twice/day) and control group is only osteotomized. After 5 days latency, osteotomic site is distracted for each 7 days and 3.5 days. Consolidation period is 28 days. The animal is sacrificed at the 3th, 7th, 14th, 28th. The distracted bone is examined by immunohistochemical analysis and RT-PCR analysis. The results obtained from this study were as follow : No significant difference was found on clinical examination according to distraction rate, but gradual distraction was shown to improve regenerate bone formation on radiographic and histologic examination. Growth factors and extracelluar matrix proteins expression increased in distraction group than control group. From these results, it could be stated that graudal distraction is shown to improve and accelerate bone formation and mechanical stress like distraction has considerable effects on osteogenesis related factors. And rabbit is the most appropriate animal model for further reseach on the molecular mechanisms that mediate osteodistraction. It is believed that understanding the biomolecular mechanisms that mediate distraction osteogenesis may guide the development of targeted strategies designed to improve distraction osteogenesis and accelerate bone healing.