• 제목/요약/키워드: Mechanical Sensor

검색결과 2,601건 처리시간 0.034초

토크 오차 감소를 위한 디스크형 커플링을 갖는 토크센서가 내장된 로봇 관절모듈 (Joint Module with Joint Torque Sensor Having Disk-type Coupling for Torque Error Reduction)

  • 민재경;김휘수;송재복
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.133-138
    • /
    • 2016
  • 기존에는 로봇 말단에 6축 힘/토크 센서를 부착하여 로봇의 힘제어 및 충돌감지를 수행하였지만, 이 방법은 매우 고가이고, 로봇의 몸체에서 발생한 충돌을 감지할 수 없었다. 이의 대안으로 각 관절에 관절 토크센서를 장착하였으나, 토크 측정 시에 발생하는 다양한 오차로 인하여 실제 적용에 한계가 있었다. 이러한 문제를 해결하고자 본 연구에서는 정확한 토크 측정을 위한 관절 토크센서 및 이를 포함하는 관절모듈을 개발하였다. 제안된 관절모듈은 로봇에 인가되는 모멘트 부하를 지지하고, 조립 시 발생하는 응력을 감소시키기 위하여 토크센서에 디스크형 커플링을 첨가하여 원하는 회전토크만을 효과적으로 측정할 수 있도록 하였다. 본 논문에서는 다양한 실험을 통하여 제안한 토크센서의 성능을 검증하였다.

PVDF 압전소자를 이용한 심장박동 및 호흡수 동시측정센서개발 (Development of New Stacked Element Piezoelectric Polyvinylidene Fluoride Pressure Sensor for Simultaneous Heartbeat and Respiration Measurements)

  • 박창용;권현규;이소진;롱원만
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.100-108
    • /
    • 2019
  • In this paper, a new stacked element pressure sensor has proposed for heartbeat and respiration measurement. This device can be directly attached to an individual's chest; heartbeat and respiration are detected by the pulsatile vibration and deformation of the chest. A key feature of the device is the simultaneous measurement of heart rate and respiration. The structure of the sensor consists of two stacked elements, in which one element includes one polyvinylidene fluoride (PVDF) thin film bonded on polydimethylsiloxane (PDMS) substrate. In addition, for the measurement and signal processing, the electric circuit and the filter are simply constructed with an OP-amp, resistance, and a capacitor. One element (element1, PDMS) maximizes the respiration signal; the other (element2, PVDF) is used to measure heartbeat. Element1 and element2 had sensitivity of 0.163V/N and 0.209V/N, respectively, and element2 showed improved characteristics compared with element1 in response to force. Thus, element1 and element2 were optimized for measuring respiration heart rate, respectively. Through mechanical and vivo human tests, this sensor shows the great potential to optimize the signals of heartbeat and respiration compared with commercial devices. Moreover, the proposed sensor is flexible, light weight, and low cost. All of these characteristics illustrate an effective piezoelectric pressure sensor for heartbeat and respiration measurements.

입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정 (Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light)

  • 김진호;조희찬;이승환
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.

Analysis of Noise Effects in Data Acquisition of Multi-Axis Force/Torque Sensors

  • Kang, Chul-Goo;Kim, Yong-Chan;Park, Chol-Ho;Nam, Hyun-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1254-1258
    • /
    • 2003
  • One of the major factors that effect sensor performance is analog noise that added in a sensor signal such as voltage. In multi-axis force sensors, error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body. The other error source is noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then proposes a method that can reduce the effect of noise signal to sensor performance. The method is to convert analog voltage signal to digital numbers near sensor body and then to read these digital signals and conduct signal processing in the computer. By this way, we can eliminate a bad effect of electromagnetic wave emitted from computer and of 60 Hz noise emitted from AC source. The proposed method is investigated through experimental demonstration. The experimental results show that it improves S/N ratio of the sensor about 40 times in our experimental setup.

  • PDF

IEEE 1451.0 기반 스마트 센서에서 CANopen을 이용한 다중 접속 기능의 구현 (Implementation of Multiple Connectivity using CANopen in IEEE 1451.0-based Smart Sensor)

  • 박지훈;이석;송영훈;이경창
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.436-445
    • /
    • 2011
  • As automation systems become intelligent and autonomous for productibility, industrial networks (fieldbuses) and network-based devices are essential components of intelligent manufacturing systems. However, there are obstacles for the wide acceptance of the network-based devices such as smart sensor and network-based actuator. First, there exist numerous fieldbus protocols that a network-based device should be able to support. Second, the whole network-based device has to be replaced when only the sensor of the module fails. In order to overcome these obstacles, a smart sensor/actuator is implemented as two units; one responsible for network communication and the other for sensor/actuator operations using IEEE 1451.0 standard. This paper presents a structure of the 1451.0-based smart sensor with multiple connectivity function designed by CANopen.

닌히드린 용액의 저온 건조에 의한 프롤린 검출을 위한 종이기반 센서의 분해능 개선 (Improved Resolution of Paper-based Sensor for Proline Detection by Low-temperature Drying of Ninhydrin Solution)

  • 김지관;최영수
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.428-432
    • /
    • 2022
  • In this study, we describe the improvement of the resolution of a paper-based sensor by fabricating a high-concentration ninhydrin part using a low-temperature drying method to detect proline with high resolution. In the conventional paper-based sensor for detecting proline, the ninhydrin part is fabricated at room temperature, and in this process, the ninhydrin solution spreads around the ninhydrin part. Therefore, the concentration of the ninhydrin part becomes lower than that of the applied solution, lowering the resolution of the sensor. The proposed paper-based sensor better improved the sensitivity of the sensor compared to the existing sensor by fabricating a high-concentration ninhydrin part through drying the ninhydrin solution using a low-temperature drying method. Owing to the experiment, the intensity of the green color of the paper-based sensor with the integrated ninhydrin part fabricated at 10 ℃ is approximately 20% lower than the paper-based sensor with an integrated ninhydrin part fabricated at room temperature, indicating better sensor resolution. Therefore, the paper-based sensor with an integrated ninhydrin part fabricated at a high concentration could be useful for diagnosing drought.

초정밀 광학식 변위 측정을 위한 센서 구호 밀 신호 처리 시스템 (Sensor Structure and Signal Processing System for Precision Optical Displacement Measurement)

  • 오세백;김경찬;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제18권8호
    • /
    • pp.40-47
    • /
    • 2001
  • Optical measurement methods make it possible to detect object displacements with high resolution and noncontact measurements. Also, they are very robust against EMI noises and have long operation range. An optical triangulation sensor is one of widely used displacement measurement sensors for its sub-micron resolution, fast response, simple structure, and low cost. However. there are several errors caused by inclinations of a surface. speckle effects, power fluctuations of light sources, and noises of detectors. In this paper, in order to minimize error effects, we performed error analysis and proposed a new structure. Then, we setup a new modeling method and verify it through simulations and experiments. Based on the new model. we propose a new sensor structure and establish design criteria. Finally, we design a signal processing system to overcome a resolution-limited problem of light detectors. The resolution of the proposed system is 0.2${\mu}{\textrm}{m}$ in 5mm operating range.

  • PDF

UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발 (The Underwater UUV Docking with 3D RF Signal Attenuation based Localization)

  • 곽경민;박대길;정완균;김진현
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

철도 구조물 적용을 위한 FBG 센서의 기계적 강도에 관한 연구 (Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure)

  • 윤혁진;김정석
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.104-109
    • /
    • 2009
  • 광섬유 센서 중 대표적인 FBG센서를 철도 구조물에 실제 적용하기 위해서는, 센서 자체의 기계적 강도에 대한 내구성이 확증되어야 하고, 철도 구조물의 파손 시까지 FBG 센서가 측정치를 측정할 수 있도록 충분한 변형률 한도를 가져야만 한다. 본 논문에서는 FBG센서의 기계적 강도에 영향을 미치는 변수들에 대한 연구를 수행하였다. 기계적 인장 강도 시험을 위한 시험 셋업을 구성하였고, 광섬유의 광민감성을 증진하기 위해 사용된 수소함침법과 코팅층을 제거하기 위한 피복 제거기법을 사용한 FBG 센서의 인장 강도 변화를 시험 및 통계 처리를 이용하여 측정하였고, 강도저하가 거의 없음을 보여 주었다.

A Study on Attitude Heading Reference System Based Micro Machined Electro Mechanical System for Small Military Unmanned Underwater Vehicle

  • Hwang, A-Rom;Yoon, Seon-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.522-526
    • /
    • 2015
  • Generally, underwater unmanned vehicle have adopted an inertial navigation system (INS), dead reckoning (DR), acoustic navigation and geophysical navigation techniques as the navigation method because GPS does not work in deep underwater environment. Even if the tactical inertial sensor can provide very detail measurement during long operation time, it is not suitable to use the tactical inertial sensor for small size and low cost UUV because the tactical inertial sensor is expensive and large. One alternative to INS is attitude heading reference system (AHRS) with the micro-machined electro mechanical system (MEMS) inertial sensor because of MEMS inertial sensor's small size and low power requirement. A cost effective and small size attitude heading reference system (AHRS) which incorporates measurements from 3-axis micro-machined electro mechanical system (MEMS) gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for UUV. The AHRS based MEMS overcome many problems that have inhibited the adoption of inertial system for small UUV such as cost, size and power consumption. Several evaluation experiments were carried out for the validation of the developed AHRS's function and these experiments results are presented. Experiments results prove the fact that the developed MEMS AHRS satisfied the required specification.