• Title/Summary/Keyword: Measurement Noise

Search Result 3,226, Processing Time 0.032 seconds

Design of a CMOS IF PLL Frequency Synthesizer (CMOS IF PLL 주파수합성기 설계)

  • 김유환;권덕기;문요섭;박종태;유종근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.598-609
    • /
    • 2003
  • This paper describes a CMOS IF PLL frequency synthesizer. The designed frequency synthesizer can be programmed to operate at various intermediate frequencies using different external LC-tanks. The VCO with automatic amplitude control provides constant output power independent of the Q-factor of the external LC-tank. The designed frequency divider includes an 8/9 or 16/17 dual-modulus prescaler and can be programmed to operate at different frequencies by external serial data for various applications. The designed circuit is fabricated using a 0.35${\mu}{\textrm}{m}$ n-well CMOS process. Measurement results show that the phase noise is 114dBc/Hz@100kHz and the lock time is less than 300$mutextrm{s}$. It consumes 16mW from 3V supply. The die area is 730${\mu}{\textrm}{m}$$\times$950${\mu}{\textrm}{m}$.

A Study on the Development of the Position Detection System of Small Vessels for Collision Avoidance (충돌 회피를 위한 소형 선박의 위치 검출 시스템 개발에 관한 연구)

  • Le, Dang-Khanh;Nam, Teak-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2014
  • In this paper, a developed device for detecting target's location and avoiding collision is proposed. Velocity and acceleration model of target are derived to estimate target's information, i.e. position, velocity and acceleration considering process and measurement noise. Kalman filtering method applied to the estimation process and its results was confirmed by simulation. The distance measurements system using laser sensor for moving target system is also developed to confirm the effectiveness of the proposed scheme. Experiments to get information of moving target with velocity and acceleration model was executed. The data with filtering and without filtering was compared by experiments. Discontinuous measured data was changed to smooth and continuous data by Kalman filtering. It is confirmed that desired data was obtained by applying proposed scheme. UI for measuring and monitoring the target data is developed and visual and auditory alarm function is attached on the system Finally, position estimation system of moving target with good performance is achieved by low price equipments.

An AFM-based Edge Profile Measuring Instrument for Diamond Cutting Tools

  • Asai, Takemi;Motoki, Takenori;Gao, Wei;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.54-58
    • /
    • 2007
  • This paper describes an atomic force microscope (AFM)-based instrument for measuring the nanoscale cutting edge profiles of diamond cutting tools. The instrument consists of a combined AFM unit and an optical sensor to align the AFM tip with the top of the diamond cutting tool edge over a submicron range. In the optical sensor, a aser beam is emitted from a laser diode along the Y-axis and focused to a small beam spot with a diameter of approximately $10{\mu}m$ at the beam waist, which is then received by a photodiode. The top of the tool edge is first brought into the center of the beam waist by adjusting it in the X-Z-plane while monitoring the variation in the photodiode output. The cutting tool is then withdrawn and its top edge position at the beam center is recorded. The AFM tip can also be positioned at the beam center in a similar manner to align it with the top of the cutting edge. To reduce electronic noise interference on the photodiode output and thereby enhance the alignment accuracy, a technique is applied that can modulate the photodiode output to an AC signal by driving the laser diode with a sinusoidal current. Alignment experiments and edge profile measurements of a diamond cutting tool were carried out to verify the performance of the proposed system.

The Study on the implementation and design of the RF transceiver for fast frequency hopping (고속주파수 도약용 RF송수신기 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Jong-Sung;Bae, Moon-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.591-596
    • /
    • 2016
  • This paper presents a study on the subject for the design and implementation of high-speed frequency hopping RF transceiver used for tactical communications systems. Jump the transmission / reception frequency of the L-band to hop tens per second is possible by maximizing the immunity to interference, and is applicable to communication systems having a charging rotation function. To high-speed frequency hopping it is necessary to apply the necessary fast frequency hopping scheme DDS Driven PLL added. In this paper, the RF transceiver design and simulation analysis capabilities with fast frequency tactical communication systems, were implemented after the main test for functionality and performance. Was demonstrated hop high-speed jump tens per second through a test, the main transmission output, were measured RF key performance, such as received noise figure, by using the VSG and VSA generates a ${\pi}/4$ DQPSK modulated signal constellation and by EVM measurement that there is no problem in applying the communications system described above was pre-validated.

Multi-Channel AD Converters with High-Resolution and Low-Speed (고정밀 저속 다중채널 아날로그-디지털 변환기)

  • Bae, Sung-Hwan;Lee, Chang-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • Analog-to-Digital converters (ADCs) used in instrumentation and measurements often require high absolute accuracy, including excellent linearity and negligible dc offset. Incremental converters provide a solution for such measurement applications, as they retain most of the advantages of conventional ${\Delta}{\Sigma}$ converters, and yet they are capable of offset-free and accurate conversion. Most of the previous research on incremental converters was for single-channel and dc signal applications, where they can perform extremely accurate data conversion with more than 20-bit resolution. In this paper, a design technique for implementing multiplexed incremental data converters to convert narrow bandwidth ac signals is discussed. A design methodology to optimize the signal-to-quantization+thermal noise ratio of multiplexed IDC is presented. It incorporates the operation principle, topology, and digital decimation filter design. The theoretical results are verified by simulation results.

  • PDF

GPS/RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects

  • Moschas, Fanis;Psimoulis, Panos A.;Stiros, Stathis C.
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.251-269
    • /
    • 2013
  • Measurement of deflections of certain bridges is usually hampered by corruption of the GPS signal by multipath associated with passing vehicles, resulting to unrealistically large apparent displacements. Field data from the Gorgopotamos train bridge in Greece and systematic experiments revealed that such bias is due to superimposition of two major effects, (i) changes in the geometry of satellites because of partial masking of certain satellites by the passing vehicles (this effect can be faced with solutions excluding satellites that get temporarily blocked by passing vehicles) and (ii) dynamic multipath caused from reflection of satellite signals on the passing trains, a high frequency multipath effect, different from the static multipath. Dynamic multipath seems to have rather irregular amplitude, depending on the geometry of measured satellites, but a typical pattern, mainly consisting of a baseline offset, wide base peaks correlating with the sequence of main reflective surfaces of the vehicles passing next to the antenna. In cases of limited corruption of GPS signal by dynamic multipath, corresponding to scale distortion of the short-period component of the GPS waveforms, we propose an algorithm which permits to reconstruct the waveform of bridge deflections using a weak fusion of GPS and RTS data, based on the complementary characteristics of the two instruments. By application of the proposed algorithm we managed to extract semi-static and dynamic displacements and oscillation frequencies of a historical railway bridge under train loading by using noisy GPS and RTS recordings. The combination of GPS and RTS is possible because these two sensors can be fully collocated and have complementary characteristics, with RTS and GPS focusing on the long- and short-period characteristics of the displacement, respectively.

A Study on the Analysis of Crew Members Fatigue Survey for the Ship Types in Korea (국내 선종별 선박승무원 피로도 분석에 관한 연구)

  • Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.479-484
    • /
    • 2014
  • This paper presents the crew members fatigue survey in order to understand the current state of various fatigue causal factors and personnel fatigue subjective symptoms, and then analyzes the survey items. The results of this survey are as follows. Firstly, many crew members were struggling with the lack of sleep and rest hour. Secondly, environmental factors such as weather, ship motion and vibration, noise, accommodation condition etc. disturbed the sleep of crew members. In third, their duty hours were more than 10 hours per day in certain types of ship. In fourth, they felt fatigue a lot when they were on board because of the workload and stress. Lastly, in some measurement items of fatigue symptoms(physical, mental, emotional), many crew members were experiencing more than moderate fatigue symptoms.

Development of Ultrasonic Sensor to Measure the Distance in Underwater (수중 거리 측정을 위한 초음파 센서의 개발)

  • Kim, Chi-Hyo;Kim, Tae-Sung;Jung, Jun-Ha;Lee, Jin-Hyung;Lee, Min-Ki;Jang, In-Sung;Shin, Chang-Joo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.293-298
    • /
    • 2013
  • This research develops an ultrasonic sensor to measure the distance in underwater. The ultrasonic transducer transmits an acoustic signal to an object and receives the echo signal reflected from the object. The ultrasonic driver calculates a distance by multiplying the acoustic speed to the time of flight(TOF) which is the time necessary for the acoustic signal to travel from the transducer to the object. We apply a thresholding and a cross correlation methods to detect the TOF and show their results. When an echo pulse is corrupted with noise and its shape is distorted, the cross correlation method is used to find the TOF based on the maximum similarity between the reference and the delayed echo signals. The echoes used for the reference signal are achieved at the different environments, which improves the performance of the sensor. This paper describes the driver of the acoustic sensor and analyzes the performance of sensors in different measurement environments.

  • PDF

A Study on the Environmental Performance Level Measurement in the Lecture Room during Winter Time (동계 대학강의실 환경성능수준 측정에 관한 연구)

  • Ahn, Tae-Kyung
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.2
    • /
    • pp.3-9
    • /
    • 2018
  • This study is designed to measure the indoor environment and research on the environmental situation in the lecture room where the lecture is conducted during the winter time in order to understand the level of environment in the lecture room and then suggest the method of improving the environment in the lecture room in the future. The findings are as follows. First, the number of ventilation measured at Lecture Room 1 was 1.2 times/hour while that at Lecture Room 2 was 2.2 times/hour. Second, the lighting at Lecture Room 1 and 2 was 650~700 lux while the noise at Lecture Room 1 and 2 was not more than 60dB. Third, Group 1 and Group 2 felt in the same way that the air quality in the lecture room was not good when the air quality was measured in 30 minutes after the start of lecture. Fourth, both Group 1 and Group 2 showed the lowered concentration on the class in 30 minutes after the start of the class when the room was heated. But Group 1 got less drop in the concentration when they was put in the non-heated room. Fifth, As for the change in the carbon dioxide volume during lecture, the carbon dioxide volume in the room where the windows was closed rose 1,000~1,400ppm from that at the time of start, thus showing that the indoor air quality got worsened. In addition, it is hard to control the indoor temperature due to the heating and non-heating. Accordingly, it is necessary to get the heating system which can make the ventilation in order to keep the environmental level in the lecture room to a certain level and keep the proper indoor temperature.

Measuring the Degree of Content Immersion in a Non-experimental Environment Using a Portable EEG Device

  • Keum, Nam-Ho;Lee, Taek;Lee, Jung-Been;In, Hoh Peter
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.1049-1061
    • /
    • 2018
  • As mobile devices such as smartphones and tablet PCs become more popular, users are becoming accustomed to consuming a massive amount of multimedia content every day without time or space limitations. From the industry, the need for user satisfaction investigation has consequently emerged. Conventional methods to investigate user satisfaction usually employ user feedback surveys or interviews, which are considered manual, subjective, and inefficient. Therefore, the authors focus on a more objective method of investigating users' brainwaves to measure how much they enjoy their content. Particularly for multimedia content, it is natural that users will be immersed in the played content if they are satisfied with it. In this paper, the authors propose a method of using a portable and dry electroencephalogram (EEG) sensor device to overcome the limitations of the existing conventional methods and to further advance existing EEG-based studies. The proposed method uses a portable EEG sensor device that has a small, dry (i.e., not wet or adhesive), and simple sensor using a single channel, because the authors assume mobile device environments where users consider the features of portability and usability to be important. This paper presents how to measure attention, gauge and compute a score of user's content immersion level after addressing some technical details related to adopting the portable EEG sensor device. Lastly, via an experiment, the authors verified a meaningful correlation between the computed scores and the actual user satisfaction scores.