In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.
Communications for Statistical Applications and Methods
/
제17권4호
/
pp.575-589
/
2010
Exponential L$\acute{e}$evy models have become popular in modeling price processes recently in mathematical finance. Although it is a relatively simple extension of the geometric Brownian motion, it makes the market incomplete so that the option price is not uniquely determined. As a trial to find an appropriate price for an option, we suppose a situation where a hedger wants to initially invest as little as possible, but wants to have the expected squared loss at the end not exceeding a certain constant. For this, we assume that the underlying price process follows a variance-gamma model and it converges to a geometric Brownian motion as its quadratic variation converges to a constant. In the limit, we use the mean-variance approach to find the asymptotic minimum investment with the expected squared loss bounded. Some numerical results are also provided.
Journal of the Korean Data and Information Science Society
/
제17권2호
/
pp.291-300
/
2006
In this research, the performance of widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained empirical Bayes estimator are compared by means of a measurement under balanced loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.
Journal of the Korean Data and Information Science Society
/
제16권2호
/
pp.371-382
/
2005
The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.
In a recent article, Leon et al. lucidly explained the ideas of the Taguchi two-stage procedure for parameter design optimization, and proposed alternative performance measures called PerMIA to the signal-to-noise ratios. On the other hand, Box proposed an empirical approach to the problem based upon monotone transformations of the performance characteristic(y). This paper develops procedures for parameter design optimization under the assumptions that the expected loss(not necessarily a mean squared error loss) is increasing with respect to the variance of the error in y, and that the mean of y satisfies certain conditions of adjustability. It turns out that the variance of the error in y can play the role of PerMIA, and it is further shown that the derived PerMIA can be adapted to the Box empirical procedure for the minimization of the expected loss in the original metric.
Machines are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. Under the process mean shift, production cost, failure cost and quality loss function cost are increasing continuously. Therefore a periodic preventive resetting the process is necessary. We suppose that the wear level is observable. In this case, process mean shift problem has similar characteristics to the maintenance policy model. In the previous studies, process mean shift problem has been studied in several fields such as 'Tool wear limit', 'Canning Process' and 'Quality Loss Function' separately or partially integrated form. This paper proposes an integrated cost model which involves production cost by the material, failure cost by the nonconforming items, quality loss function cost by the deviation between the quality characteristics from the target value and resetting the process cost. We expand this process mean shift problem a little more by dealing the process variance as a function, not a constant value. We suggested a multiplier function model to the process variance according to the analysis result with practical data. We adopted two-side specification to our model. The initial process mean is generally set somewhat above the lower specification. The objective function is total integrated costs per unit wear and independent variables are wear limit and initial setting process mean. The optimum is derived from numerical analysis because the integral form of the objective function is not possible. A numerical example is presented.
All machines deteriorate in performance over time. The phenomenon that causes such performance degradation is called deterioration. Due to the deterioration, the process mean of the machine shifts, process variance increases due to the expansion of separate interval, and the failure rate of the machine increases. The maintenance model is a matter of determining the timing of preventive maintenance that minimizes the total cost per wear between the relation to the increasing production cost and the decreasing maintenance cost. The essential requirement of this model is that the preventive maintenance cost is less than the failure maintenance cost. In the process mean shift model, determining the resetting timing due to increasing production costs is the same as the maintenance model. In determining the timing of machine adjustments, there are two differences between the models. First, the process mean shift model excludes failure from the model. This model is limited to the period during the operation of the machine. Second, in the maintenance model, the production cost is set as a general function of the operating time. But in the process mean shift model, the production cost is set as a probability functions associated with the product. In the production system, the maintenance cost of the equipment and the production cost due to the non-confirming items and the quality loss cost are always occurring simultaneously. So it is reasonable that the failure and process mean shift should be dealt with at the same time in determining the maintenance time. This study proposes a model that integrates both of them. In order to reflect the actual production system more accurately, this integrated model includes the items of process variance function and the loss function according to wear level.
Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. The representative type of the degeneration is wear of tool or machine. According to the increasing wear level, non-conforming products cost and quality loss cost are increasing simultaneously. Therefore a periodic preventive resetting the process is necessary. The total cost consists of three items: adjustment cost (or replacement cost), non-conforming cost due to product out of upper or lower limit specification, and quality loss cost due to difference from the process target value and the product characteristic value among the conforming products. In this case, the problem of determining the adjustment period or wear limit that minimizes the total cost is called the 'process mean shift' problem. It is assumed that both specifications are set and the wear level can be observed directly. In this study, we propose a new model integrating the quality loss cost, process variance, and production volume, which has been conducted in different fields in previous studies. In particular, for the change in production volume according to the increasing in wear level, we propose a generalized production quantity function g(w). This function can be applied to most processes and we fitted the g(w) to the model. The objective equation of this model is the total cost per unit wear, and the determining variables are the wear limit and initial process setting position that minimize the objective equation.
Nguyen, Phap Do Cong;Baek, Eu-Tteum;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kang, Sae-Ryung;Min, Jung-Joon
한국멀티미디어학회논문지
/
제22권12호
/
pp.1376-1384
/
2019
The cosmetic and behavioral aspects of aging have become increasingly evident over the years. Physical aging in people can easily be observed on their face, posture, voice, and gait. In contrast, bone aging only becomes apparent once significant bone degeneration manifests through degenerative bone diseases. Therefore, a more accurate and timely assessment of bone aging is needed so that the determinants and its mechanisms can be more effectively identified and ultimately optimized. This study proposed a deep learning approach to assess the bone age of an adult using whole-body bone scintigraphy. The proposed approach uses multiple inputs deep neural network architectures using a loss function, called mean-variance loss. The data set was collected from Chonnam National University Hwasun Hospital. The experiment results show the effectiveness of the proposed method with a mean absolute error of 3.40 years.
Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. By the result of degeneration, non-conforming products and malfunction of machine occur. Therefore a periodic preventive resetting the process is necessary. This type of preventive action is called 'preventive maintenance policy.' Preventive maintenance presupposes that the preventive (resetting the process) cost is smaller than the cost of failure caused by the malfunction of machine. The process mean shift problem is a field of preventive maintenance. This field deals the interrelationship between the quality cost and the process resetting cost before machine breaks down. Quality cost is the sum of the non-conforming item cost and quality loss cost. Quality loss cost is due to the deviation between the quality characteristics from the target value. Under the process mean shift, the quality cost is increasing continuously whereas the process resetting cost is constant value. The objective function is total costs per unit wear, the decision variables are the wear limit (resetting period) and the initial process mean. Comparing the previous studies, we set the process variance as an increasing concave function and set the quality loss function as Cpm+ simultaneously. In the Cpm+, loss function has different cost coefficients according to the direction of the quality characteristics from target value. A numerical example is presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.