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Abstract
Exponential Lévy models have become popular in modeling price processes recently in mathematical finance.

Although it is a relatively simple extension of the geometric Brownian motion, it makes the market incomplete so
that the option price is not uniquely determined. As a trial to find an appropriate price for an option, we suppose
a situation where a hedger wants to initially invest as little as possible, but wants to have the expected squared
loss at the end not exceeding a certain constant. For this, we assume that the underlying price process follows a
variance-gamma model and it converges to a geometric Brownian motion as its quadratic variation converges to
a constant. In the limit, we use the mean-variance approach to find the asymptotic minimum investment with the
expected squared loss bounded. Some numerical results are also provided.

Keywords: Option pricing, variance-gamma processes, weak convergence, incomplete market,
bounded loss.

1. Introduction

Lévy models with jumps have been frequently used as an alternative to the geometric Brownian mo-
tion in modeling the asset price process in mathematical finance during the last decade. Especially,
exponential Lévy models with jumps of infinite activity, have become very popular. Madan and
Seneta (1990), Eberlein and Keller (1995), Barndorff-Nielsen (1998) and Carr et al. (2002) are now
well-known papers on Lévy modeling in mathematical finance among others. The main empirical
motivation of using an exponential Lévy model comes from fitting the asset return distribution of real
market data. With several particular choices for the Lévy process used in the exponential Lévy model,
it is known that the model can account for some empirical features observed in real financial markets
such as high kurtosis and nonzero skewness. As well as Lévy models are flexible enough to fit the
distribution of historical data very accurately and explain the stylized empirical facts of time series of
price process, (see Geman, 2002; Cont and Tankov, 2004 or Schoutens, 2003) they are also simple
enough to develop varied mathematical theories of option pricing and hedging.

However, even though exponential Lévy models are relatively simple extensions of the Black-
Scholes model, they lead the market to an incomplete one. As well-known, the price of a contingent
claim is not uniquely determined and the exact replication of an option is impossible in any incom-
plete market. Although there have been many attempts to find an appropriate price or an appropriate
equivalent martingale measure, there is no universally accepted way of determining the price of a
contingent claim. See Song and Song (2008) for some selected papers dealing with such attempts.
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With Lévy models, the characteristic function is explicitly expressed and option prices can be
obtained using the inversion of the characteristic function if we can fix an appropriate equivalent
martingale measure and estimate parameters under that measure. Indeed, the option pricing with
Lévy models is typically studied in line of inversion, approximation and calibration. We can use the
inversion formula to obtain the density function, write the expected value of the option payoff with the
density, set it to be equal to the observed market price, calibrate the appropriate parameters, and then
find the price of option of interest using the calibrated parameter values. However, this method needs
to fix one equivalent martingale measure under which we calibrate the model, and typically needs
some numerical methods such as Fast Fourier transform for inversion. Our pricing criterion does
not use numerical approximation and does not require modeling under a specific martingale measure,
although we utilize the minimal martingale measure in the limit as a tool to find a minimum possible
investment.

The purpose of this paper is to find the minimum investment that guarantees the expected squared
loss bounded by a certain level, as one attempt to find an appropriate price of an option in an in-
complete market. The log of the underlying price process is assumed to follow the variance-gamma
process, which is a relatively simple case of Lévy processes with jumps of infinite activity. More ex-
plicitly, we consider the sequence of variance-gamma processes that converges weakly to the Black-
Scholes model. This setup is the same as that of Song and Song (2008) where they consider the
sequence of compound Poisson processes converging to the Black-Scholes model. It is also similar to
that of Hong and Wee (2003) where they consider a sequence of jump-diffusion models that converges
to the Black-Scholes model. In their paper, they priced a contingent claim using the minimal martin-
gale measure and constructed the locally risk-minimizing strategy. They also studied the convergence
of option prices as the underlying process converges to the Black-Scholes model.

Here, we consider the sequence of variance-gamma processes that converges weakly to the Black-
Scholes model, and try to find the minimum initial investment while the expected squared loss at the
end is bounded by a given constant. The difference between Song and Song (2008) and this paper is
the underlying asset price process. Compound Poisson processes considered in Song and Song (2008)
have finite jump activity and are not enough to explain many of stylized empirical facts of real asset
price processes. Here, we change the underlying process to a more realistic one and obtain similar
results.

The remainder of the paper is organized as follows. Section 2 describes the detailed model and
some weak convergence results. Section 3 studies the main problem by finding the mean-variance
hedging strategy of the limit of the Black-Scholes hedging error and finding the minimum possible
initial investment in the limit. We include some numerical results in Section 4. Section 5 contains
concluding remarks.

2. Model and Weak Convergences

In many financial applications of Lévy models, the underlying stock price process, S , is assumed to
follow

S t = S 0 exp(Zt),

where Z = {Zt, t ≥ 0} is a Lévy process. A stochastic process {Zt} is a Lévy process if it has indepen-
dent and stationary increments and stochastically continuous sample paths. Z0 = 0, and it has random
jump times. Lévy process includes Brownian motions, Poisson processes and compound Poisson
processes as simple forms.
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One dimensional Lévy processes can be characterized by (σ, ν∗, γ), called as the characteristic
triplet, or Lévy triplet of the process. With (σ, ν∗, γ), the characteristic function of Zt, E(eiuZt ) is
represented as etψ(u) with the following Lévy -Khintchine formula,

ψ(u) = iγu − 1
2
σ2u2 +

∫ +∞

−∞

(
exp(iux) − 1 − iuxI{|x|>1}

)
ν∗(dx),

where γ ∈ R, σ2 ≥ 0 and ν∗ is a measure on R\{0} with∫ +∞

−∞

(
1 ∧ x2

)
ν∗(dx) < ∞.

Lévy measure ν∗ controls the jump dynamics of the process Z so that jumps of sizes in the set A
occur according to a Poisson process with intensity parameter

∫
A ν
∗(dx). For more details on Lévy

processes, especially used in the Finance area, one can refer to Cont and Tankov (2004) or Schoutens
(2003).

When Z = {Zt, t ≥ 0} follows a variance-gamma process with parameters σ, ν and θ, the charac-
teristic function of Zt will be

ϕVG (u;σ, ν, θ) =
(
1 − iuθν +

1
2
σ2νu2

)− t
ν

.

Variance-gamma process can be represented as a time-changed Brownian motion with gamma subor-
dinator as Zt = θGt+σWGt , where W is a Brownian motion and G is a gamma process with parameters,
1/ν and ν. It can also be represented as a difference of two gamma processes. When G(1) is a gamma
process with parameters, 1/ν and

√
1/4θ2ν2 + 1/2σ2ν + 1/2θν, and G(2) is a gamma process with

parameters, 1/ν and
√

1/4θ2ν2 + 1/2σ2ν − 1/2θν, we can see that Zt = G(1)
t −G(2)

t .
Now, let us consider a sequence of variance-gamma processes that converges to a geometric Brow-

nian motion. Each element of the sequence is a pure jump process, indexed by δ. δ does not have a
practical meaning, but it is used as a measure of the degree of discontinuity. A smaller δ means that
the degree of discontinuity is smaller, i.e., the process is closer to a geometric Brownian motion.

For each of δ, the log stock price process is defined on a probability space (Ω,F , (F δ)0≤t≤T ,P)
and follows

log S δ
t = log S δ

0 + Zδ
t , (2.1)

where {Zδ
t } follows is a variance-gamma process with parameters, σδ, νδ and θδ. As δ goes to 0,

we assume that θδ converges to µ − 1/2σ2 for some constants µ and σ, σδ converges to σ, and νδ

converges to 0. The filtration, {F δ
t }, is generated by S δ defined above, and we assume that the initial

stock price S δ
0 is the same as S 0 for all δ. As δ goes to 0, the conditions on parameters above assure

that S δ converges weakly to a geometric Brownian motion.

Proposition 1. Assume all the above conditions. Then as δ goes to 0, the process log S δ converges
weakly to log S that is

log S t = log S 0 +

(
µ − 1

2
σ2

)
t + σBt, (2.2)

where B is a Brownian Motion under P.
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Proof: See Appendix A. �

Although the convergence in Proposition 1 holds when θδ → µ − 1/2σ2, σδ → σ and νδ → 0,
we will assume that θδ = µ − 1/2σ2, σδ = σ and νδ → 0. For the application purpose, two sets
of assumptions will not make much difference since we will estimate the values of µ and σ from
estimates of θδ and σδ. In fact, we could have some unidentifiability issue in the parameter estimation
with the first set of assumptions.

We consider a market with two securities; a stock as a risky asset and a cash bond as a riskless
asset. Then consider a European style option whose payoff is H(S δ

T ) with the expiration time T . We
assume that H(S δ

T ) is in L2(P) and the interest rate r is 0 without loss of generality so that the value
of a unit of the cash bond is always 1. Throughout the paper, we denote C(x, t) the solution of the
Black-Scholes PDE at time t < T , with the terminal condition, C(x,T ) = H(x). CS , CS S and CS S S

denote the first, second, and third derivatives of C(x, t) with respect to x, respectively. For each δ, we
compute C(S δ

t , t) by plugging in the corresponding stock price process S δ. In other words, C(S δ
t , t) is

computed by the Black-Scholes PDE, but it may be different from what we observe from the market.
On the other hand, C(S t, t) is also computed by the Black-Scholes PDE, but it is the true market price
in the limit because the limiting stock price S follows the geometric Brownian motion.

Let Xδ be the value process of the Black-Scholes hedging portfolio, i.e.,

Xδ
t = C

(
S δ

0, 0
)
+

∫ t

0
CS

(
S δ

u−, u
)

dS δ
u.

In order to see the limit of the Black-Scholes hedging error, we define a sequence of numerical quan-
tities, λδ, that converges to ∞ as δ goes to 0, representing the difference between the pre-limiting
underlying process and the limiting process. For this, we define λδ as follows and use it to scale up
the Black-Scholes hedging error in the following asymptotic procedures.

λδ =

(∫
z2ν∗δ(dz) − σ2

)−1 (∫
zν∗δ(dz)

)2

, (2.3)

where ν∗δ is the Lévy measure of the underlying variance-gamma process. This definition can be also
used for more general Lévy models with suitable conditions. With the variance-gamma process that
we now consider, λδ is the same as 1/νδ and it goes to ∞ as δ goes to 0 by the previous assumption
of νδ → 0. λδ can be seen as the reciprocal of the scaled difference of quadratic variations between
pre-limiting and limiting processes.

Denote Rδ to be the scaled Black-Scholes hedging error,
√
λδ(C(S δ

· , ·) − Xδ
· ). Then we can show

that Rδ converges to a continuous process jointly with S δ in the following theorem.

Theorem 1.
√
λδ(C(S δ

· , ·) − Xδ
· ) converges jointly with S δ in distribution to (R, S ) where

Rt =

∫ t

0

√
3σ2

2
S 2

uCS S (S u, u)dW̃u (2.4)

and W̃ is a Brownian motion under P that is independent of B.

Proof: See Appendix B. �
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Since we know that the scaled Black-Scholes hedging error
√
λδ(C(S δ

· , ·) − Xδ
· ) converges weakly

to a continuous process R, a reasonable hedging strategy will have a form as

Xδ
t +

1
√
λδ

Kδ
t = Xδ

t +
1
√
λδ

(
K0 +

∫ t

0
ηδudS δ

u

)
, (2.5)

where K0 is F0-measurable and ηδu is a hedging strategy for the Black-Scholes hedging error, Rδ. We
assume that ηδ is a predictable process with respect to {F δ

t }. Assuming that ηδ converges weakly to
η jointly with S δ and Rδ and η is a predictable process with respect to {Ft}, the limiting filtration
generated by two Brownian Motions, W̃ and B, satisfying E(

∫ T
0 (ηuS u)2du) < ∞, we can show that the

Black-Scholes hedging error process, Rδ
t , and Kδ

t = K0 +
∫ t

0 η
δ
udS δ

u converge jointly in distribution as
follows.

Proposition 2. Assume the above conditions on ηδ and η including that ηδ
D−→ η jointly with S δ

and Rδ. Then with Kt = K0 +
∫ t

0 ηudS u,(
Rδ, S δ,Kδ

) D−→ (R, S ,K).

Proof: See Appendix C. �

From now on, we will consider hedging strategies of the form in (2.5) only. The goal is to find the
minimum possible investment with a bounded squared loss at the end by a fixed constant U′ as

E
(
H

(
S δ

T

)
−

(
Xδ

T +
1
√
λδ

Kδ
T

))2

≤ U′.

In other words, we want to find the smallest value of K0 that satisfies

E
(
Rδ

T − Kδ
T

)2 ≤ Uδ, (2.6)

for the upper bound Uδ = λδU′.

3. Bounded Expected Loss

In this section, we find the smallest possible investment with a bounded squared loss in the limit and
based on the result in the limit, we propose a hedging strategy and the initial investment to use in the
pre-limiting market. Since λδ is 1/νδ, we can calibrate the value of λδ from the market data. It means
that Uδ in (2.6) can be determined as a constant before the asymptotics that will be studied below.
Thus, throughout this section, we will drop the subscript δ from Uδ.

It is easy to see that (Rδ
T − Kδ

T )2 converges weakly to (RT − KT )2 by the result from the previous
section and continuity of the square function. However, as it is well-known, the convergence in
distribution does not imply the convergence of expected values. If, for example, Rδ

T −Kδ
T is uniformly

integrable, E(Rδ
T − Kδ

T )2 will be arbitrarily close to E(RT − KT )2 for a small δ, but we will not assume
its uniform integrability in order to include more strategies under consideration. Nevertheless, here
we find the smallest value K0 in the limit with the constraint E(RT − KT )2 ≤ U, along with the
corresponding hedging strategy for RT , η, in Kt = K0+

∫ t
0 ηudS u. Then we use K0 and the pre-limiting

version of η in the pre-limiting market and see the performance of this pair of initial investment and
hedging strategy.
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Define Θ as a set {η : predictable with respect to F , E(
∫ T

0 η2
uS 2

udu) < ∞}. Note that if any pair

(K0, η) solves the problem of minimizing K0 subject to E(RT − KT )2 = E(RT − K0 −
∫ T

0 ηudS u)2 ≤ U,

then (K0, ηK0 ) also solves the same problem, where ηK0 = argminη∈ΘE(RT − K0 −
∫ T

0 ηudS u)2. So we

can restrict our attention to a smaller set Θ′, which is {η ∈ Θ : η minimizes E(RT − K0 −
∫ T

0 ηudS u)2

for a certain value of K0}, for a proper set of η’s. We will consider only {Kt}’s of the form Kt =

K0 +
∫ t

0 ηK0,udS u. We denote Gt(η) to be
∫ t

0 ηudS u.
Song and Song (2008) showed that the following proposition for a compound Poisson process as

the underlying price process. (Proposition 3.1 and Proposition 3.2 in Song and Song (2008).) Since
the model in Song and Song (2008) has the same limiting processes as in our set-up, the result in the
limit will be the same. Thus, the proof for the following proposition is omitted.

Proposition 3. {Kt = K0+
∫ t

0 ηudS u} that makes the expected squared loss, E(RT −KT )2, minimized
for a given initial value K0 is

Kt = K0 +

∫ t

0

µ

σ2S u

(
S u

S 0

)− µ

σ2

e
− 1

2

(
µ2

σ2 +µ
)
u
∫ u

0

(
S v

S 0

) µ

σ2

e
1
2

(
µ2

σ2 +µ
)
v
YvdW̃v − K0

 dS u,

where Yu =
√

3σ2/2S 2
uCS S (S u, u) and W̃u is the Brownian motion introduced in Theorem 1. Moreover,

the minimum investment subject to E(RT − K0 −GT (η))2 ≤ U is

K̃0 = −e
µ2

2σ2 T

√
U −

∫ T

0
E

(
e−

µ2

σ2 (T−u)Y2
u

)
du.

If U is smaller than
∫ T

0 E(e−µ
2/σ2(T−u)Y2

u )du, it is not possible to make the expected squared loss
bounded by U and we need to increase the upper bound of the expected loss. When the contingent
claim being considered is a call option, we can get a more explicit expression. If the option is a
European call with the strike price K and expiration time T , then the minimum investment will be

K̃0 = −e
µ2

2σ2 T

√(
U − 3σ2

8π

∫ T

0

1
√

T 2 − u2
exp

(
B(T ) +C(T )u
σ2(T + u)

)
du

)
,

where B(T ) = −(log(S 0/K))2 +σ2T log(S 0K)−σ4/4T 2 −µ2T 2 and C(T ) = σ2µT +2(µ+σ2) log K −
2µ log S 0. For more details, see Song and Song (2008).

Let us use the pre-limiting version of what we have found in the pre-limiting market. The initial
investment and the hedging strategy we would use generate the value of the portfolio as follows.

Lδt = Xδ
t +

1
√
λδ

(
K̃0 +

∫ t

0
ηδK̃0,u

dS δ
u

)
= C(S 0, 0) +

∫ t

0
CS (S δ

u−, u)dS δ
u +

K̃0√
λδ

+
1
√
λδ

∫ t

0

µ

σ2S δ
u−

(
S δ

u−
S 0

)− µ

σ2

e
− 1

2

(
µ2

σ2 +µ
)
u

×
∫ u

0

(
S δ

v−
S 0

) µ

σ2

e
1
2

(
µ2

σ2 +µ
)
v
dRδ

v − K̃0

 dS δ
u. (3.1)
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Table 1: Initial investment and
√

MSHE. When λδ = 10,000, we compare two cases of using Black-Scholes
option price and hedging strategy and using K̃0 and corresponding variance-gamma hedging strategy. We gain at
the beginning with smaller initial investment and lose at the end with larger

√
MSHE, but the loss is smaller

than the gain.
Black-Scholes Variance-gamma with K̃0

initial investment (in $) 1.5717 1.4708√
MSHE (in $) 0.065 0.105

The initial investment with the bounded loss constraint will be the Black-Scholes price, C(S 0, 0), plus
K̃0/
√
λδ. As we saw in Proposition 3, K̃0 is always negative so that our initial investment is smaller

than the Black-Scholes price. By Song and Mykland (2006), K0 = 0 minimizes E(RT −K0−GT (θK0 ))2

among all possible values of K0. Since we are willing to tolerate a higher level of error at the expiration
in this case, we should be able to reduce the initial investment from the Black-Scholes price, and it has
achieved by Proposition 3. In later sections, we will call ηK̃0

and {Lδt } above as the variance-gamma
hedging strategy and the value of the variance-gamma hedging portfolio, respectively.

4. Numerical Results

Consider a European call option that expires in 6 months. The interest rate is assumed to be 0, µ is set
to be 0.15 per annum, and σ is set to be 0.2 per annum. We try λδ = 10,000. It means that the pre-
limiting variance-gamma process has the parameter values as θδ = 0.13, σδ = 0.2 and νδ = 0.0001.
We set the strike price K = $60 and the initial stock price S 0 = $60.

We rebalance the hedging portfolio in every .0001 years, approximately once in an hour and the
number of generated sample paths is 1,000. The Black-Scholes initial price is $1.5717, in this case.

The simulation study is to compare the Black-Scholes portfolio with the variance-gamma hedging
portfolio given in (3.1). The initial investment of Black-Scholes portfolio is C(S 0, 0), and that of
variance-gamma portfolio is C(S 0, 0) + K̃0/

√
λδ. We compare these values numerically and also

compare the performance of two hedging portfolios by calculating their mean squares of hedging
errors (abbreviated by MSHE). By hedging error, we mean the option payoff subtracted by the value
of the hedging portfolio at the expiration. For example, the MSHE of the Black-Scholes strategy is

E
(
option payoff at the expiration −C(S 0, 0) −

∫ T

0
CS

(
S δ

t−, t
)

dS δ
t

)2

.

Suppose that we want the expected squared error loss at the end to be at most U′ = 0.01. It means
that the upper bound, U, in (2.6) is 100. The results of numerical integration and simulation with 1000
sample paths are given in Table 1. By using the variance-gamma strategy with K̃0, we gain 10 cents at
the beginning over the case when we follow the Black-Scholes strategy, while we lose 4 cents in the
square root of MSHE at the end. The loss at the end in the pre-limiting case is less than the gain at
the beginning. Figure 1 compares densities of hedging errors for two hedging portfolios. We can see
that the variance-gamma hedging error has a bit less variability than the Black-Scholes hedging error,
although it has larger bias. The bias mainly comes from the lower initial investments.

The square root of the MSHE of the variance-gamma strategy with K̃0 is supposed to be no more
than 0.1, the bound that we hoped to achieve, but in the simulation result, it is a bit larger than the
upper bound. This discrepancy can be possibly explained by the fact that the computed MSHE is not
a quantity in the limit. To see the distribution of the square root of the MSHE before the limit for
other cases, we ran 1,000 simulations for λδ = 5,000, 10,000 and 20,000. Each simulation has 1,000
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Figure 1: Comparison of densities of hedging errors. Full curve is for the error of the Black-Scholes hedging
strategy and thr broken curve is for the error of the variance-gamma hedging strategy. λδ is 10,000. The variance-
gamma hedging error has a bit less variability than the Black-Scholes hedging error but a larger bias due to the

lower initial investment.

sample paths and we obtain one value of the square root of the MSHE from each simulation. Table 2
summarizes the result.

As expected, we see in Table 2 that when λδ increases, the values of MSHE of Black-Scholes
strategy tend to decrease. As δ gets smaller, the Black-Scholes hedging strategy gets closer to the
perfect hedging strategy. But the values of MSHE of variance-gamma strategy do not decrease much,
since we aimed to minimize the initial investment with the bounded expected squared loss. In that
sense, the MSHEs are supposed to have similar values close to the upper bound. Also, as seen in
Table 1, the square root of the MSHE of the variance-gamma strategy is still larger than 0.1, but the
values do not blow up as λδ increases and values are very close to the upper bound that we desired.
The values of K̃0/

√
λδ tell us how much we can reduce the initial investment from the Black-Scholes

price by using the variance-gamma strategy. The values of K̃0/
√
λδ do not decrease as λδ increases,

and it is explained by the fact that the leading term of K̃0 is exp(−µ2/(2σ2)T )
√
λδU′ from Proposition

3. The leading term of K̃0/
√
λδ does not depend on δ. From Table 2, we can see that we still gain

more at the beginning than the loss at the expiration by using the variance-gamma strategy, keeping
the MSHE not too far from the original upper bound.
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Table 2:
√

MSHE values for various λδ’s. For several different λδ values, we computed the
√

MSHE of two
pairs of initial investment and corresponding hedging strategies. The column names as K̃0/

√
λδ shows how

much we can save at the beginning by using K̃0.
K̃0/
√
λδ Black-Scholes Variance-gamma with K̃0

λδ = 5,000 −0.084 0.082 0.106
λδ = 10,000 −0.101 0.065 0.105
λδ = 20,000 −0.108 0.054 0.105

5. Concluding Remark

In this paper, we have provided a method of finding a reasonable option price when the log of the asset
price follows a variance-gamma model that converges to a Black-Scholes model. We have studied the
problem assuming that the hedger wants to minimize the initial investment with the expected squared
loss bounded by a constant.

We showed that the Black-Scholes hedging error, Rδ, converges weakly to a continuous process, R,
and found the mean-variance hedging strategy of RT in the limit. We also found the initial investment
to achieve E(RT − KT )2 ≤ U, where K is the value process of the mean-variance hedging strategy of
RT with a given initial value. Then we proposed to use the same initial investment and follow the pre-
limiting version of the mean-variance hedging strategy in the pre-limiting market, as given in (3.1).
The corresponding hedging strategy to the smallest initial investment has a form of the Black-Scholes
hedging strategy plus a correction term.

Numerical study shows that the reduction we achieved in the initial investment is more than the
loss we have to endure at the expiration for several different λδ values. It means that what we have
shown in the limiting market still holds in the pre-limiting market with finite λδ’s. Although the value
of MSHE is a little bit larger than the upper bound that we set up in the beginning, there exists a solid
gain over the case where we use the Black-Scholes hedging strategy in using the variance-gamma
strategy with K̃0.

Appendix A: Proof of Proposition 1

We assume that θδ = µ = 1/2σ2, σδ = σ and νδ → 0 as δ → 0. Define Mδ and Mδ
ϵ to be the

martingale part of log S δ and the martingale part of log S δ with jump size greater than ϵ in absolute
value, respectively. Then Mδ is a square-integrable martingale and

⟨
Mδ,Mδ

⟩
t
=

∫ t

0

∫
z2ν∗δ(dz)ds =

((
θδ

)2
νδ +

(
σδ

)2
)

t −→
δ→0

σ2t,⟨
Mδ
ϵ ,M

δ
ϵ

⟩
t
=

∫ t

0

∫
|z|>ϵ

z2ν∗δ(dz)ds −→
δ→0

0,

where ν∗δ is the Lévy measure of the underlying process as in (2.3). The above convergence results
can easily be shown by plugging in the Lévy measure of the variance-gamma process. By Rebolledo’s
theorem (Andersen et al., 1992), Mδ → σB where B is a Brownian motion under the limiting measure
P, and thus, by Proposition VI.3.17 in Jacod and Shiryaev (1987),

log S δ D−→ log S .
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Appendix B: Proof of Theorem 1

Lemma 1. Define ξδt =
√
λδ([log S δ, log S δ]t −σ2t) and ξt =

√
3σ2W̃t. W̃ is a Brownian motion that

is independent of B, the Brownian motion that drives the limiting asset price process. Then,(
log S δ, ξδ

) D−→ (log S , ξ).

Proof: Define M̂δ
t to be

√
λδ([log S δ, log S δ]t − ⟨log S δ, log S δ⟩t). Then ξδt = M̂δ

t +
√
λδ(

∫
z2ν∗δ(dz)−

σ2)t = M̂δ
t + o(1). Thus, it suffices to show that(

log S δ, M̂δ
) D−→ (log S , ξ)

and again, it is sufficient to show that(
log S δ − log S 0 − θδt,Mδ

) D−→ (σB, ξ),

because log S t = log S 0 + (µ − 1/2σ2)t + σBt and θδ = µ − 1/2σ2.
As in Appendix A, Mδ denotes the martingale part of log S δ. Then Mδ and M̂δ are square-

integrable martingales satisfying⟨
M̂δ, M̂δ

⟩
t
= λδ

∫ t

0

∫
z4ν∗δ(dz) −→

δ→0
3σ4t,⟨

Mδ,Mδ
⟩

t
=

∫ t

0

∫
z2ν∗δ(dz) −→

δ→0
σ2t

and ⟨
Mδ, M̂δ

⟩
t
=

√
λδ

∫ t

0

∫
z3ν∗δ(dz) −→

δ→0
0.

Now, consider local square-integrable martingales, Mδ
ϵ and M̂δ

ϵ , which include all the jumps of the
original martingales in absolute value greater than ϵ, for a given ϵ > 0. Their quadratic variations are⟨

Mδ
ϵ ,M

δ
ϵ

⟩
t
=

∫ t

0

∫
|z|>ϵ

z2ν∗δ(dz)ds −→
δ→0

0,

⟨
M̂δ
ϵ , M̂

δ
ϵ

⟩
t
= λδ

∫ t

0

∫
|z|>ϵ

z4ν∗δ(dz)ds −→
δ→0

0.

By Rebolledo’s theorem (Andersen et al., 1992, p.83), (Mδ, M̂δ)
D−→ (σB, ξ) and therefore, by Propo-

sition VI.3.17 in Jacod and Shiryaev (1987), (log S δ, ξδ)
D−→ (log S , ξ). �

Let us now define Rδ as a process,
√
λδ(C(S ·, ·) − Xδ

· ). In order to see the weak limit of Rδ, let us
check limits of a few quantities. ∫

zν∗δ(dz) = θδ −→
δ→0

µ − 1
2
σ2

√
λδ

(∫
z2ν∗δ(dz) − σ2

)
=
√
νδ

(
θδ

)2 −→
δ→0

0
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√
λδ

∫
z3ν∗δ(dz) =

1
√
νδ

(
2
(
θδ

)3 (
νδ

)2
+ 3θδσ2νδ

)
−→
δ→0

0

λδ

∫
z4ν∗δ(dz) =

1
νδ

(
6
(
θδ

)4 (
νδ

)3
+ 12

(
θδ

)2
σ2

(
νδ

)2
+ 3σ4νδ

)
−→
δ→0

3σ4

λδ

∫
|z|>ϵ

z4ν∗δ(dz) −→
δ→0

0

λδ

∫
|z|<1

z6ν∗δ(dz) −→
δ→0

0

λδ

∫
|z|>1

e|z|ν∗δ(dz) −→
δ→0

0. (B.1)

The last convergence is valid as long as Mδ > 1 and Gδ > 1, where Mδ = (
√

1/4(θδ)2(νδ)2 + 1/2σ2νδ+

1/2θδνδ)−1 and Gδ = (
√

1/4(θδ)2(νδ)2 + 1/2σ2νδ−1/2θδνδ)−1. Since Mδ → ∞ and Gδ → ∞ as δ→ 0,
we can assume that they are less than 1 for sufficiently small δ.

By Itô’s formula and Taylor expansion,

Rδ
t =

√
λδ

(
C

(
S δ

t , t
)
−C(S 0, 0) −

∫ t

0
CS

(
S δ

u−, u
)

dS δ
u

)
=

√
λδ

∫ t

0
Ct

(
S δ

u−, u
)

du +
∑
u≤t

(
∆C

(
S δ

u, u
)
−CS

(
S δ

u−, u
)
∆S δ

u

)
=

√
λδ

∫ t

0
Ct

(
S δ

u−, u
)

du +
∑
u≤t

1
2

CS S

(
S δ

u−, u
) (
∆S δ

u

)2
+

∑
u≤t

1
6

CS S S

(
Z̃δ

u , u
) (
∆S δ

u

)3
 ,

where Z̃δ is a process satisfying min(S δ
t−, S

δ
t ) ≤ Z̃δ

t ≤ max(S δ
t−, S

δ
t ), for all 0 < t < T . By Black-

Scholes partial differential equation and using ∆S δ
t = S δ

t−(e∆ log S δ
t − 1),

Rδ
t =

√
λδ

∫ t

0
−σ

2

2
CS S

(
S δ

u−, u
) (

S δ
u−

)2
du +

∑
u≤t

1
2

CS S

(
S δ

u−, u
) (
∆S δ

u

)2
+

∑
u≤t

1
6

CS S S

(
Z̃δ

u, u
) (
∆S δ

u

)3


= −
√
λδ
2

∫ t

0
σ2CS S

(
S δ

u−, u
) (

S δ
u−

)2
du +

√
λδ
2

∑
u≤t

CS S

(
S δ

u, u
) (

S δ
u−

)2 (
e∆ log S δ

u − 1
)2

+

√
λδ
6

∑
u≤t

CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3 (
e∆ log S δ

u − 1
)3
. (B.2)

We can rewrite Rδ
t as

Rδ
t =

1
2

∫ t

0
CS S

(
S δ

u−, u
) (

S δ
u

)2
dξδu

+
√
λδ

∑
u≤t

1
6

(
3CS S

(
S δ

u−, u
) (

S δ
u−

)2
+CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3
) (
∆Zδ

u

)3

+
√
λδ

∑
u≤t

1
4

(
7
6

CS S

(
S δ

u−, u
) (

S δ
u−

)2
+CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3
) (
∆Zδ

u

)4
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+
∑
u≤t

(
CS S

(
S δ

u−, u
) (

S δ
u−

)2 × (
higher order terms

)
+CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3 × (
higher order terms

))
. (B.3)

We can also show the following.

(i) By Lemma VI.3.31 in Jacod and Shiryaev (1987) and lemma 1, (log Z̃δ, log S δ, ξδ)
D−→ (log S ,

log S , ξ), since (log S δ, log S δ, ξδ)
D−→ (log S , log S , ξ) and supt≤T | log Z̃δ

t − log S δ
t | < supt≤T

|∆ log S δ
t | = op(1).

(ii) Define M̃δ to be
√
λδ([log S δ, log S δ, log S δ] − ⟨log S δ, log S δ, log S δ⟩). Then M̃δ is a square-

integrable martingale and

⟨
M̃δ, M̃δ

⟩
t
= λδ

∫ t

0

∫
z6ν∗δ(dz)ds

= λδ

∫ t

0

∫
|z|>1

z6ν∗δ(dz)ds + λδ

∫ t

0

∫
|z|<1

z6ν∗δ(dz)ds −→
δ→0

0,

which can be shown by (B.1). Also define M̃δ
ϵ to be the martingale part of

√
λδ[log S δ, log S δ, log S δ]

with jump size greater than ϵ in absolute value. Then,

⟨
M̃δ
ϵ , M̃

δ
ϵ

⟩
t
= λδ

∫ t

0

∫
|z|>ϵ

z6ν∗δ(dz)ds ≤ λδ
∫ t

0

∫
z6ν∗δ(dz)ds −→

δ→0
0.

By Rebolledo’s theorem (Andersen et al., 1992), M̃δ D−→ 0 and thus,
√
λδ

∑
u≤t(∆Zδ

u)3 D−→ 0 since√
λδ

∫ t
0

∫
z3ν∗δ(dz)ds→ 0.

(iii) Since
∑

u≤t
√
λδ(∆Zδ

u)4 ≥ 0 and E(
∑

u≤t
√
λδ(∆Zδ

u)4) =
√
λδ

∫ t
0

∫
z4ν∗δ(dz)ds −→

δ→0
0, we can see

easily that
∑

u≤t
√
λδ(∆Zδ

u)4 D−→ 0.

(iv) For higher order terms of
∑

u≤t
√
λδ(∆Zδ

u)m, m = 5, 6, . . ., we can show that
∑

u≤t
√
λδ(∆Zδ

u)2k D−→ 0

and
∑

u≤t
√
λδ(∆Zδ

u)2k−1 D−→ 0 for k ≥ 3, separately as follows.

E

∑
u≤t

√
λδ

(
∆Zδ

u

)2k
 = 1
√
λδ
λδt

∫
z2kν∗δ(dz)

=
1
√
λδ

(
λδt

∫
|z|<1

z2kν∗δ(dz) + λδt
∫
|z|>1

z2kν∗δ(dz)
)

≤ 1
√
λδ

(
λδt

∫
|z|<1

z4ν∗δ(dz) + λδt
∫
|z|>1

z2kν∗δ(dz)
)

−→ 0
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E

∑
u≤t

√
λδ|∆Zδ

u |2k−1

 = 1
√
λδ
λδt

∫
|z|2k−1ν∗δ(dz)

=
1
√
λδ

(
λδt

∫
|z|<1
|z|2k−1ν∗δ(dz) + λδt

∫
|z|>1
|z|2k−1ν∗δ(dz)

)
≤ 1
√
λδ

(
λδt

∫
|z|<1

z4ν∗δ(dz) + λδt
∫
|z|>1
|z|2k−1ν∗δ(dz)

)
−→ 0.

(v) By Theorem 2.7 in Kurtz and Protter (1991) and (i) through (iv) above,(
log Z̃δ, log S δ, ξδ,

1
2

∫ ·

0

(
S δ

u−
)2

CS S

(
S δ

u−, u
)

dξδu,√
λδ

∑
u≤·

1
6

(
3CS S

(
S δ

u−, u
) (

S δ
u−

)2
+CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3
) (
∆Zδ

u

)3
,

√
λδ

∑
u≤·

1
4

(
7
6

CS S

(
S δ

u−, u
) (

S δ
u−

)2
+CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3
) (
∆Zδ

u

)4


D−→
(
log S , log S , ξ,

1
2

∫ ·

0
S 2

uCS S (S u, u) dξu, 0, 0
)
.

For this, we check conditions including the followings.

– For ξδ,

ξδt =
√
λδ

([
log S δ, log S δ

]
t
−

⟨
log S δ, log S δ

⟩
t

)
+

√
λδ

(⟨
log S δ, log S δ

⟩
t
− σ2t

)
=: Mδ

ξ,t + Aδ
ξ,t,

E[Mδ
ξ ,M

δ
ξ ]t < ∞ and supδ E(Mδ

ξ,t + Tt(Aδ
ξ)) < ∞, where Tt(Aδ

ξ) is the total variation of Aδ
ξ on

[0, t].

– For
√
λδ

∑
u≤t

(
∆Zδ

u

)3
,√

λδ
∑
u≤t

(
∆Zδ

u

)3
=

√
λδ

([
log S δ, log S δ, log S δ

]
t
−

⟨
log S δ, log S δ, log S δ

⟩
t

)
+

√
λδ

⟨
log S δ, log S δ, log S δ

⟩
t

=: Mδ
(∆ log S )3,t + Aδ

(∆ log S )3,t,

E[Mδ
(∆ log S )3 ,Mδ

(∆ log S )3 ]t < ∞ and supδ E(Mδ
(∆ log S )3,t+Tt(Aδ

(∆ log S )3 )) < ∞,where Tt(Aδ
(∆ log S )3 )

is the total variation of Aδ
(∆ log S )3 on [0, t].

– For
√
λδ

∑
u≤t

(
∆ log S δ

u

)4
,√

λδ
∑
u≤t

(
∆ log S δ

u

)4
=

√
λδ

([
log S δ, log S δ, log S δ, log S δ

]
t
−

⟨
log S δ, log S δ, log S δ, log S δ

⟩
t

)
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+
√
λδ

⟨
log S δ, log S δ, log S δ, log S δ

⟩
t

=: Mδ

(∆ log S )4
,t
+ Aδ

(∆ log S )4,t,

E[Mδ
(∆ log S )4 ,Mδ

(∆ log S )4 ]t < ∞ and supδ E(Mδ
(∆ log S )4,t+Tt(Aδ

(∆ log S )4 )) < ∞,where Tt(Aδ
(∆ log S )4 )

is the total variation of Aδ
(∆ log S )4 on [0, t].

(iv) The last term in (B.3) has a higher order than√
λδ

∑
u≤·

1
4

(
7
6

CS S

(
S δ

u−, u
) (

S δ
u−

)2
+CS S S

(
Z̃δ

u , u
) (

S δ
u−

)3
) (
∆ log S δ

u

)4
.

Therefore,

Rδ
t
D−→

∫ t

0

1
2

S 2
uCS S (S u, u)dξu,

as a process jointly with S δ.

Appendix C: Proof of Proposition 2

We know from Theorem 1, (Rδ, S δ) converges to (R, S ) weakly, and by assumption, we have

(Rδ, S δ, ηδ)
D−→ (R, S , η).

S δ, Rδ and ηδ are adapted to the filtration generated by S δ. In order to prove this proposition, we only
need to check if S δ satisfies the proper conditions as an integrator of the stochastic integral, given in
Kurtz and Protter (1991).

Proof: S δ, Rδ, ηδ are adapted to the filtration generated by S δ, cádlág processes, and S δ is a semi-
martingale. Since S δ

t = S 0eZδt and Zδ
t = θ

δt +
∫ t

0

∫
z(µδ(ds, dz) − ν∗δ(dz)ds),

S δ
t =

∫ t

0
S δ

u−dZδ
u +

∑
u≤t

S δ
u−

(
e∆Zδu − 1 − ∆Zδ

u

)
=

∫ t

0
θδS δ

u−du +
∫ t

0
S δ

u−

∫
z
(
µδ(du, dz) − ν∗δ(dz)du

)
+

∫ t

0
S δ

u−

∫
(ez − 1 − z) µδ(du, dz)

=

∫ t

0
S δ

u−

∫
(ez − 1)

(
µδ(du, dz) − ν∗δ(dz)du

)
+

∫ t

0
θδS δ

u−du +
∫ t

0
S δ

u−

∫
(ez − 1 − z)ν∗δ(dz)du

=: Mδ
(S ),t + Aδ

(S ),t,

where Mδ
(S ) and Aδ

(S ) are the martingale and finite variation parts of S δ, respectively. Then,

E
[
Mδ

(S ),M
δ
(S )

]
t
= E

∑
u≤t

(
S δ

u−
)2 (

e∆Zδu − 1
)2
 = E

(∫ t

0

(
S δ

u−
)2

du
) ∫

(ez − 1)2 ν∗δ(dz)

E
(
Tt

(
Aδ

(S )

))
=

∫ t

0
E

(
S δ

u−
)

du ×
∣∣∣∣∣∫ (ez − 1) ν∗δ(dz)

∣∣∣∣∣ ,
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where Tt(Aδ
(S )) is the total variation of Aδ

(S ) on [0, t]. Using the fact that Zδ
t is written as θδGδ

t +σ
δWGδ

t

where W is a standard Brownian motion and Gδ is a Gamma process with (1/νδ, νδ), we can see that as
δ→ 0, E(S δ

t )→ S 0eµt and E(S δ
t )2 → S 2

0e(2µ+σ2)t. E[Mδ
(S ),M

δ
(S )]t < ∞ and supδ E(Mδ

(S ),t + Tt(Aδ
(S ))) <

∞, since
∫

(ez − 1)ν∗δ(dz) and
∫

(ez − 1)2ν∗δ(dz) can be bounded as δ → 0. Therefore, by Theorem

2.7 in Kurtz and Protter (1991), (Rδ, S δ, ηδ,
∫
ηδdS δ)

D−→ (R, S , η,
∫
ηdS ) and thus, (Rδ, S δ,Kδ)

D−→
(R, S ,K). �
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