• Title/Summary/Keyword: Mean-Shift Model

Search Result 125, Processing Time 0.027 seconds

Determination of Resetting Time to the Process Mean Shift with Failure (고장을 고려한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.145-152
    • /
    • 2019
  • All machines deteriorate in performance over time. The phenomenon that causes such performance degradation is called deterioration. Due to the deterioration, the process mean of the machine shifts, process variance increases due to the expansion of separate interval, and the failure rate of the machine increases. The maintenance model is a matter of determining the timing of preventive maintenance that minimizes the total cost per wear between the relation to the increasing production cost and the decreasing maintenance cost. The essential requirement of this model is that the preventive maintenance cost is less than the failure maintenance cost. In the process mean shift model, determining the resetting timing due to increasing production costs is the same as the maintenance model. In determining the timing of machine adjustments, there are two differences between the models. First, the process mean shift model excludes failure from the model. This model is limited to the period during the operation of the machine. Second, in the maintenance model, the production cost is set as a general function of the operating time. But in the process mean shift model, the production cost is set as a probability functions associated with the product. In the production system, the maintenance cost of the equipment and the production cost due to the non-confirming items and the quality loss cost are always occurring simultaneously. So it is reasonable that the failure and process mean shift should be dealt with at the same time in determining the maintenance time. This study proposes a model that integrates both of them. In order to reflect the actual production system more accurately, this integrated model includes the items of process variance function and the loss function according to wear level.

Robust Mean-Shift Tracking Using Adoptive Selection of Hue/Saturation (Hue/Saturation 영상의 적응적 선택을 이용한 강인한 Mean-Shift Tracking)

  • Park, Han-dong;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.579-582
    • /
    • 2015
  • The Mean-Shift is a robustness algorithm that can be used for tracking the object using the similarity of histogram distributions of target model and target candidate. However, Mean-shift using hue information has disadvantage of tracking a wrong target when the target and background has similar hue distributions. We then propose a robust Mean-Shift tracking algorithm using new image that combined upper 4bit-planes in hue and saturation, respectively.

  • PDF

Determination of the Resetting Time to the Process Mean Shift by the Loss Function (손실함수를 적용한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.165-172
    • /
    • 2017
  • Machines are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. Under the process mean shift, production cost, failure cost and quality loss function cost are increasing continuously. Therefore a periodic preventive resetting the process is necessary. We suppose that the wear level is observable. In this case, process mean shift problem has similar characteristics to the maintenance policy model. In the previous studies, process mean shift problem has been studied in several fields such as 'Tool wear limit', 'Canning Process' and 'Quality Loss Function' separately or partially integrated form. This paper proposes an integrated cost model which involves production cost by the material, failure cost by the nonconforming items, quality loss function cost by the deviation between the quality characteristics from the target value and resetting the process cost. We expand this process mean shift problem a little more by dealing the process variance as a function, not a constant value. We suggested a multiplier function model to the process variance according to the analysis result with practical data. We adopted two-side specification to our model. The initial process mean is generally set somewhat above the lower specification. The objective function is total integrated costs per unit wear and independent variables are wear limit and initial setting process mean. The optimum is derived from numerical analysis because the integral form of the objective function is not possible. A numerical example is presented.

Target Modeling with Color Arrangement for Region-Based Object Tracking (영역 기반 물체 추적에서 색상 배치를 고려한 표적 모델링)

  • Kim, Dae-Hwan;Lee, Seung-Jun;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose a new class of color histogram model suitable for object tracking. In addition to the pixel count, each bin of the proposed model also contains the spatial mean and the average value of the pixels located at a certain distance from the mean location of the bin. Using the proposed color histogram model, we derive a mean shift procedure using the modified Bhattacharyya distance. Unlike most mean shift based methods, our algorithm performs well even when the object being tracked shares similar colors with the background. Experimental results demonstrate improved tracking performance over existing methods.

Integration of Condensation and Mean-shift algorithms for real-time object tracking (실시간 객체 추적을 위한 Condensation 알고리즘과 Mean-shift 알고리즘의 결합)

  • Cho Sang-Hyun;Kang Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.273-282
    • /
    • 2005
  • Real-time Object tracking is an important field in developing vision applications such as surveillance systems and vision based navigation. mean-shift algerian and Condensation algorithm are widely used in robust object tracking systems. Since the mean-shift algorithm is easy to implement and is effective in object tracking computation, it is widely used, especially in real-time tracking systems. One of the drawbacks is that it always converges to a local maximum which may not be a global maximum. Therefore, in a cluttered environment, the Mean-shift algorithm does not perform well. On the other hand, since it uses multiple hypotheses, the Condensation algorithm is useful in tracking in a cluttered background. Since it requires a complex object model and many hypotheses, it contains a high computational complexity. Therefore, it is not easy to apply a Condensation algorithm in real-time systems. In this paper, by combining the merits of the Condensation algorithm and the mean-shift algorithm we propose a new model which is suitable for real-time tracking. Although it uses only a few hypotheses, the proposed method use a high-likelihood hypotheses using mean-shift algorithm. As a result, we can obtain a better result than either the result produced by the Condensation algorithm or the result produced by the mean-shift algorithm.

Testing Outliers in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.419-437
    • /
    • 1995
  • Given the specific mean shift outlier model, several standard approaches to obtaining test statistic for outliers are discussed. Each of these is developed in detail for the nonlinear regression model, and each leads to an equivalent distribution. The geometric interpretations of the statistics and accuracy of linear approximation are also presented.

  • PDF

Robust Target Model Update for Mean-shift Tracking with Background Weighted Histogram

  • Jang, Yong-Hyun;Suh, Jung-Keun;Kim, Ku-Jin;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1377-1389
    • /
    • 2016
  • This paper presents a target model update scheme for the mean-shift tracking with background weighted histogram. In the scheme, the target candidate histogram is corrected by considering the back-projection weight of each pixel in the kernel after the best target candidate in the current frame image is chosen. In each frame, the target model is updated by the weighted average of the current target model and the corrected target candidate. We compared our target model update scheme with the previous ones by applying several test sequences. The experimental results showed that the object tracking accuracy was greatly improved by using the proposed scheme.

Multiple Human Tracking using Mean Shift and Depth Map with a Moving Stereo Camera (카메라 이동환경에서 mean shift와 깊이 지도를 결합한 다수 인체 추적)

  • Kim, Kwang-Soo;Hong, Soo-Youn;Kwak, Soo-Yeong;Ahn, Jung-Ho;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.937-944
    • /
    • 2007
  • In this paper, we propose multiple human tracking with an moving stereo camera. The tracking process is based on mean shift algorithm which is using color information of the target. Color based tracking approach is invariant to translation and rotation of the target but, it has several problems. Because of mean shift uses color distribution, it is sensitive to color distribution of background and targets. In order to solve this problem, we combine color and depth information of target. Also, we build human body part model to handle occlusions and we have created adaptive box scale. As a result, the proposed method is simple and efficient to track multiple humans in real time.

A Score test for Detection of Outliers in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.201-208
    • /
    • 1993
  • Given the specific mean shift outlier model, the score test for multiple outliers in nonlinear regression is discussed as an alternative to the likelihood ratio test. The geometric interpretation of the score statistic is also presented.

  • PDF

Object Modeling with Color Arrangement for Region-Based Tracking

  • Kim, Dae-Hwan;Jung, Seung-Won;Suryanto, Suryanto;Lee, Seung-Jun;Kim, Hyo-Kak;Ko, Sung-Jea
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.399-409
    • /
    • 2012
  • In this paper, we propose a new color histogram model for object tracking. The proposed model incorporates the color arrangement of the target that encodes the relative spatial distribution of the colors inside the object. Using the color arrangement, we can determine which color bin is more reliable for tracking. Based on the proposed color histogram model, we derive a mean shift framework using a modified Bhattacharyya distance. In addition, we present a method of updating an object scale and a target model to cope with changes in the target appearance. Unlike conventional mean shift based methods, our algorithm produces satisfactory results even when the object being tracked shares similar colors with the background.