• Title/Summary/Keyword: Mean strain

Search Result 459, Processing Time 0.02 seconds

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

Adaptive Image Binarization for Automated Surface Strain Measurment (판재 곡면변형률 자동측정을 위한 적응 2치영상화)

  • Shin, Gun Il;Kwon, Ho Yeol;Kim, Hyong-Jong
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.21-29
    • /
    • 1997
  • In this paper, an adaptive image binarization scheme is proposed for automated surface strain measurement. At first, we reviewed an image based 3D deformation factor measurement briefly. Then, a new adaptive thresholding method is proposed for the extraction of lattice pattern from a deformed plate image using its local mean and variance. Some experimental results are presented to verify the effectiveness of our approaches.

  • PDF

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

Nondestructive Damage Identification in a Truss Structure Using Time Domain Responses (시간영역의 응답을 사용한 트러스 구조물의 비파괴 손상평가)

  • Choi, Sang-Hyun;Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, an algorithm to locate and size damage in a complex truss structure using the time domain response is presented. Sampled response data for specific time interval is spatially expanded over the structure to obtain the mean train energy for each element of the structure. The mean strain energy for each element is, in turn, used to build a damage index that represents the ratio of the stiffness parameter of the pre-damaged to the post-damaged structure. The validity of the methodology is demonstrated using data from a numerical example of a space truss structure with simulated damage. Also in the example, the effects of noisy data on the proposed algorithm are examined by adding random noised to the response data.

Attenuation and Protective Effects of a Thermostable Newcastle Disease Virus Isolated from Korean Pheasants (한국산 꿩으로부터 분리한 열 안정성 뉴캣슬병 바이러스의 순화와 방어효과)

  • 한수철;곽길한;김태중;장경수;전무형;송희종
    • Korean Journal of Poultry Science
    • /
    • v.27 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The objective of these experiments was to develop an attenuated thermostable Newcastle disease virus(NDV), CBP-1 strain isolated from infected pheasants. Safety, pathogenicity and protective effects against velogenic NDV were also investigated to evaluate if the attenuated NDV, CBP-1 strain could be a candidate for a new NDV vaccine strain. CBP-1 strain was passaged up to the 173 times by nine days old embryonated eggs and chicken embryo fibroblast(CEF) cell cultures. Its sensitivitly to lipid solvents and low pH, thermostability, mean death time(MDT), intracerebral pathogenicity index(ICPI) of one day old chicks and intravenous pathogenicity index(IVPI) of four weeks old chicks were examined. Safety, boosting and protective effects were tested by chicks mortality. CBP-1 NDV strain had significant thermostability at 56$\^{C}$ for 30 minutes. by hemagglutinin activity and egg infectivity test, but was not resistant to lipid solvent. It showed possibility to use as a feed or water vaccine because of the resistance to low pH. MDT, ICPI and IVPI of CBP-1 were attenuated from 51.5, 1.96, 2.60 to 112.4, 1.12, 1.45. These results implied that the 173rd passages in embryonated egg and CEF cell cultures induced a substantial attenuation of the pathogenicity of the parent virus, changing the virulence from velogenic to intermediate between mesogenic and lentogenic. After vaccination with CBP-1 at one day old by drinking water mortality was 17.5%. However, spray vaccination with B1 at one day old, CBP-1 at two weeks ild and challenge with velogenic Kyojeongwon strain at four weeks old showed 93.5% survival rate. Mortality of chicks, vaccination with 173rd passaged CBP-1 strain at one day old, two weeks old and challenge with Kyokeongwon strain at four weeks old, was 20.0%. The results of these studies indicated that partial attenuated CBP-1 strain tended to be a low safety for ND of broiler chicks and would need to be more successive attenuation.

  • PDF

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

Acinetobacter marinus sp. novo and Acinetobacter seohaensis sp. nov., Isolated from Sea Water of the Yellow Sea in Korea

  • Yoon, Jung-Hoon;Kim, In-Gi;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1743-1750
    • /
    • 2007
  • Two Gram-negative, nonmotile, coccobacilli, SW-$3^T$ and SW-$100^T$, were isolated from sea water of the Yellow Sea in Korea. Strains SW-$3^T$ and SW-$100^T$ contained ubiquinone-9 (Q-9) as the predominant respiratory lipoquinone and $C_{18:1}\;{\omega}9c$ and $C_{16:0}$ as the major fatty acids. The DNA G+C contents of strains SW-$3^T$ and SW- $100^T$ were 44.1 mol% and 41.9 mol%, respectively. A neighbor-joining tree based on l6S rRNA gene sequences showed that the two isolates fell within the evolutionary radiation enclosed by the genus Acinetobacter. Strains SW-$3^T$ and SW-$100^T$ exhibited a l6S rRNA gene similarity value of 95.7% and a mean DNA-DNA relatedness level of 9.2%. Strain SW-$3^T$ exhibited l6S rRNA gene sequence similarity levels of 93.5-96.9% to the validly described Acinetobacter species and fifteen Acinetobacter genomic species. Strain SW-$100^T$ exhibited l6S rRNA gene sequence similarity levels of less than 97.0% to the other Acinetobacter species except Acinetobacter towneri DSM $14962^T$ (98.0% similarity). Strains SW-$3^T$ and SW-$100^T$ exhibited mean levels of DNA-DNA relatedness of 7.3-l6.7% to the type strains of some phylogenetically related Acinetobacter species. On the basis of phenotypic, phylogenetic, and genetic data, strains SW-$3^T$ and SW-$100^T$ were classified in the genus Acinetobacter as two distinct novel species, for which the names Acinetobacter marinus sp. novo (type strain SW-$3^T$=KCTC $12259^T$=DSM $16312^T$) and Acinetobacter seohaensis sp. novo (type strain SW-$100^T$=KCTC $12260^T$=DSM $16313^T$) are proposed, respectively.

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.