• 제목/요약/키워드: Mean squared error

검색결과 717건 처리시간 0.027초

정면충돌 시험결과와 딥러닝 모델을 이용한 흉부변형량의 예측 (Prediction of Chest Deflection Using Frontal Impact Test Results and Deep Learning Model)

  • 이권희;임재문
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.

A Comparative Study for Several Bayesian Estimators Under Squared Error Loss Function

  • Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.371-382
    • /
    • 2005
  • The paper compares the performance of some widely used Bayesian estimators such as Bayes estimator, empirical Bayes estimator, constrained Bayes estimator and constrained Bayes estimator by means of a new measurement under squared error loss function for the typical normal-normal situation. The proposed measurement is a weighted sum of the precisions of first and second moments. As a result, one can gets the criterion according to the size of prior variance against the population variance.

  • PDF

디지털 홀로그래픽 데이터 저장 시스템을 위한 1차원 및 2차원 최소 평균-제곱-에러 등화에 관한 연구 (A study on 1 & 2 dimensional minimum mean-squared-error equalization for digital holographic data storage system)

  • 최안식;전영식;정종래;백운식
    • 한국광학회지
    • /
    • 제13권6호
    • /
    • pp.486-492
    • /
    • 2002
  • 본 논문에서는 디지털 홀로그래픽 데이터 저장 시스템에서 2차원 데이터의 저장과 복원 동안에 발생되는 상호 픽셀에 의한 간섭(intersymbol interference:ISI)을 완화하고 bit-error-rate(BER) 성능개선을 위해 1차원 및 2차원 최소 평균-제곱-에러 (minimum mean-squared-error:MMSE) 등화(equalization)를 적용하였다. 홀로그래픽 저장 시스템으로부터 복원된 10개의 페이지에 대해서 등화 수행전보다 1차원 및 2차원 MMSE등화 적용 후, BER과 signal-to-noise ratio(SNR)이 향상됨을 보였다.

Minimum Mean Squared Error Invariant Designs for Polynomial Approximation

  • Joong-Yang Park
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.376-386
    • /
    • 1995
  • Designs for polynomial approximation to the unknown response function are considered. Optimality criteria are monotone functions of the mean squared error matrix of the least squares estimator. They correspond to the classical A-, D-, G- and Q-optimalities. Optimal first order designs are chosen from the invariant designs and then compared with optimal second order designs.

  • PDF

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • 한국조사연구학회:학술대회논문집
    • /
    • 한국조사연구학회 2002년도 추계학술대회 발표논문집
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

Accuracy Measures of Empirical Bayes Estimator for Mean Rates

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제17권6호
    • /
    • pp.845-852
    • /
    • 2010
  • The outcomes of counts commonly occur in the area of disease mapping for mortality rates or disease rates. A Poisson distribution is usually assumed as a model of disease rates in conjunction with a gamma prior. The small area typically refers to a small geographical area or demographic group for which very little information is available from the sample surveys. Under this situation the model-based estimation is very popular, in which the auxiliary variables from various administrative sources are used. The empirical Bayes estimator under Poissongamma model has been considered with its accuracy measures. An accuracy measure using a bootstrap samples adjust the underestimation incurred by the posterior variance as an estimator of true mean squared error. We explain the suggested method through a practical dataset of hitters in baseball games. We also perform a Monte Carlo study to compare the accuracy measures of mean squared error.

Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용 (Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm)

  • 강현구;서동성;이병석;강민수
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.

Minimum Mean Squared Error Accelerated Life Test Plans for Exponential Lifetime Distribution

  • Joong Yang Park
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.13-19
    • /
    • 1995
  • This paper considers model robust accelerated life test plans for estimating the logmean or percentile of product lige which is exponentially distributed. A linear relationship between the log mean life and the stress is assumed as usual, while the true relationship is quadratic. Optimum plans are then obtained by minimizing asymptotic mean squared error of maximum likelihood estimator of the log mean life.

  • PDF

다중반응표면 최적화를 위한 가중평균제곱오차 (A Weighted Mean Squared Error Approach to Multiple Response Surface Optimization)

  • 정인준;조현우
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.625-633
    • /
    • 2013
  • 본 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여, 입력변수의 최적 조건을 찾는 것을 목적으로 한다. 지금까지 다중반응표면 최적화를 위하여 다양한 방법이 제안되어 왔는데, 그 중 평균제곱오차 최소화법은 다수의 반응변수의 평균과 표준편차를 동시에 고려하여 최적화하는 방법이다. 이 방법은 기본적으로 평균과 표준편차가 동일한 가중치를 가지고 있다는 것을 전제로 하고 있다. 그러나 문제의 상황에 따라 평균과 표준편차에 서로 다른 가중치를 부여해야 하는 경우도 있다. 이에 본 논문에서는 기존의 평균제곱오차를 확대하여 평균과 표준편차에 서로 다른 가중치도 부여할 수 있도록 가중평균제곱오차 최소화법을 제안하고자 한다.

에너지 인터넷을 위한 GRU기반 전력사용량 예측 (Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy)

  • 이동구;선영규;심이삭;황유민;김수환;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.120-126
    • /
    • 2019
  • 최근 에너지 인터넷에서 지능형 원격검침 인프라를 이용하여 확보된 대량의 전력사용데이터를 기반으로 효과적인 전력수요 예측을 위해 다양한 기계학습기법에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 전력량 데이터와 같은 시계열 데이터에 대해 효율적으로 패턴인식을 수행하는 인공지능 네트워크인 Gated Recurrent Unit(GRU)을 기반으로 딥 러닝 모델을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 제안한 학습 모델의 예측 성능과 기존의 Long Short Term Memory (LSTM) 인공지능 네트워크 기반의 전력량 예측 성능을 비교하며, 성능평가 지표로써 Mean Squared Error (MSE), Mean Absolute Error (MAE), Forecast Skill Score, Normalized Root Mean Squared Error (RMSE), Normalized Mean Bias Error (NMBE)를 이용한다. 실험 결과에서 GRU기반의 제안한 시계열 데이터 예측 모델의 전력량 수요 예측 성능이 개선되는 것을 확인한다.